Chapter 5
Synchronous Sequential Logic

5.1 INTRODUCTION

The digital circuits considered thus far have been combinational; that is, the outputs are entirely
dependent on the current inputs, Although every digital system is likely to have some combi-
national circuits, most systems encountered in practice also include storage elements, which
require that the system be described in terms of sequential logic. First, we need to understand
what distinguishes sequential logic from combinational logic.

5.2 SEQUENTIAL CIRCUITS

A block diagram of a sequential circuit is shown in Fig. 5.1. It consists of a combinational cir-
cuit to which storage elements are connected to form a feedback path. The storage elements are
devices capable of storing binary information. The binary information stored in these elements
atany given time defines the state of the sequential circuit at that time. The sequential circuit
receives binary information from external inputs that, together with the present state of the

lﬂpuﬂ' ——f O WTL e > Ollrpuﬂ

FIGURE 5.1
Block diagram of sequential circuit

182

Section 5.2 Sequential Circuits 183

storage elements, determine the binary value of the outputs. These external inputs also deter-
mine the condition for changing the state in the storage elements. The block diagram demon-
strates that the outputs in a sequential circuit are a function not only of the inputs, but also of
the present state of the storage elements. The next state of the storage elements is also a func-
tion of external inputs and the present state. Thus, a sequential circuit is specified by a time
sequence of inputs, outputs, and internal states. In contrast, the outputs of combinational logic
depend only on the present values of the inputs.

There are two main types of sequential circuits, and their classification is a function of the
timing of their signals. A synchronous sequential circuit is a system whose behavior can be
defined from the knowledge of its signals at discrete instants of time. The behavior of an asyn-
chronous sequential circuit depends upon the input signals at any instant of time and the order
in which the inputs change. The storage elements commonly used in asynchronous sequential
circuits are time-delay devices, The storage capability of a time-delay device varies with the
time it takes for the signal to propagate through the device. In practice, the internal propaga-
tion delay of logic gates is of sufficient duration to produce the needed delay, so that actual delay
units may not be necessary. In gate-type asynchronous systems, the storage elements consist
of logic gates whose propagation delay provides the required storage. Thus, an asynchronous
sequential circuit may be regarded as a combinational circuit with feedback. Because of the feed-
back among logic gates, an asynchronous sequential circuit may become unstable at times.
The instability problem imposes many difficulties on the designer. Asynchronous sequential cir-
cuits are presented in Chapter 9.

A synchronous sequential circuit employs signals that affect the storage elements at only dis-
crete instants of time. Synchronization is achieved by a timing device called a clock genera-
tor, which provides a clock signal having the form of a periodic train of clock pulses. The clock
signal is commonly denoted by the identifiers clock and ¢lk. The clock pulses are distributed
throughout the system in such a way that storage elements are affected only with the arrival of
each pulse. In practice, the clock pulses determine when computational activity will occur
within the circuit, and other signals (external inputs and otherwise) determine what changes will
take place affecting the storage elements and the outputs. For example, a circuit that is to add
and store two binary numbers would compute their sum from the values of the numbers and
store the sum at the occurrence of a clock pulse. Synchronous sequential circuits that use clock
pulses to control storage elements are called clocked sequential circuits and are the type most
frequently encountered in practice. They are called synchronous circuits because the activity
within the circuit and the resulting updating of stored values is synchronized to the occurrence
of clock pulses, The design of synchronous circuits is feasible because they seldom manifest
instability problems and their timing is easily broken down into independent discrete steps,
each of which can be considered separately.

The storage elements (memory) used in clocked sequential circuits are called flip-flops. A
flip-flop is a binary storage device capable of storing one bit of information. In a stable state,
the output of a flip-flop is either 0 or 1. A sequential circuit may use many flip-flops to store
as many bits as necessary. The block diagram of a synchronous clocked sequential circuit is
shown in Fig. 5.2. The outputs are formed by a combinational logic function of the inputs to
the circuit or the values stored in the flip-flops (or both). The value that is stored in a flip-flop
when the clock pulse occurs is also determined by the inputs to the circuit or the values presently

184

3.

3

Chapter 5 Synchronous Sequential Logic

Inputs ————s — Outputs
- Combinational v
2 clrcuit -
Flip-flops
Clock pulses I
(a) Block diagram
-1 ™ | _‘i | e {—'_1
L T]
(b) Timing diagram of clock pulses
FIGURE 5.2

Synchronous clocked sequential circuit

stored in the flip-flop (or both). The new value is stored (i.e., the flip-flop is updated) when a
pulse of the clock signal occurs. Prior to the occurrence of the clock pulse, the combinational
logic forming the next value of the flop-flop must have reached a stable value. Consequently,
the speed at which the combinational logic circuits operate is critical. If the clock (synchro-
nizing) pulses arrive at a regular interval, as shown in the timing diagram in Fig. 5.2, the com-
binational logic must respond to a change in the state of the flip-flop in time to be updated
before the next pulse arrives. Propagation delays play an important role in determining the
minimum interval between clock pulses that will allow the circuit to operate correctly, The
state of the flip-flops can change only during a clock pulse transition—for example, when the
value of the clock signals changes from 0 to 1. When a clock pulse is not active, the feedback
loop between the value stored in the flip-flop and the value formed at the input to the flip-flop
is effectively broken because the flip-flop outputs cannot change even if the outputs of the
combinational circuit driving their inputs change in value. Thus, the transition from one state
to the next occurs only at predetermined intervals dictated by the clock pulses.

STORAGE ELEMENTS: LATCHES

A storage element in a digital circuit can maintain a binary state indefinitely (as long as power
is delivered to the circuit), until directed by an input signal to switch states, The major differ-
ences among various types of storage elements are in the number of inputs they possess and
in the manner in which the inputs affect the binary state, Storage elements that operate with
signal levels (rather than signal transitions) are referred to as larches; those controlled by a
clock transition are flip-flops. Latches are said to be level sensitive devices; flip-flops are edge-
sensitive devices. The two types of storage elements are related because latches are the basic
circuits from which all flip-flops are constructed. Although latches are useful for storing binary
information and for the design of asynchronous sequential circuits (see Section 9.3), they are

SR Latch

Section 5.3 Storage Elements: Latches 185

not practical for use in synchronous sequential circuits. Because they are the building blocks
of flip-flops, however, we will consider the fundamental storage mechanism used in latches be-
fore considering flip-flops in the next section.

The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates,
and two inputs labeled § for set and R for reset. The SR latch constructed with two cross-
coupled NOR gates is shown in Fig. 5.3, The latch has two useful states, When output Q = 1|
and Q' = 0, the latch is said to be in the ser state. When Q = 0 and Q' = 1, itis in the reset
state. Outputs O and Q' are normally the complement of each other. However, when both in-
puts are equal to 1 at the same time, a condition in which both outputs are equal to 0 (rather
than be mutually complementary) occurs. If both inputs are then switched to 0 simultaneous-
ly. the device will enter an unpredictable or undefined state or a metastable state. Consequently,
in practical applications, setting both inputs to 1 is forbidden.

Under normal conditions, both inputs of the latch remain at 0 unless the state has to be
changed. The application of a momentary 1 to the § input causes the latch to go to the set state.
The § input must go back to 0 before any other changes take place, in order to avoid the oc-
currence of an undefined next state that results from the forbidden input condition. As shown
in the function table of Fig. 5.3(b), two input conditions cause the circuit to be in the set state.
The first condition (§ = 1, R = 0) is the action that must be taken by input § to bring the cir-
cuit to the set state. Removing the active input from S leaves the circuit in the same state, After
both inputs return to 0, it is then possible to shift to the reset state by momentary applying a 1
to the R input, The 1 can then be removed from R, whereupon the circuit remains in the reset
state. Thus, when both inputs § and R are equal to 0, the latch can be in either the set or the reset
state, depending on which input was most recently a 1.

If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0. This action pro-
duces an undefined next state, because the state that results from the input transitions depends
on the order in which they return to 0. It also violates the requirement that outputs be the com-
plement of each other. In normal operation, this condition is avoided by making sure that 1's
are not applied to both inputs simultaneously.

The SR latch with two cross-coupled NAND gates is shown in Fig. 5.4. It operates with
both inputs normally at 1, unless the state of the latch has to be changed. The application of 0

1 ——
(}J LR{reset) SR|2¢Q

Q 1 01 0
0 0f1 0 (after§S=1,R=10)
§ 01f01
‘ ‘ , 0 0[0 1 (afterS=0,R=1)
e L s(set) Q 1 110 0 (forbidden)
(a) Logic diagram (b) Function table
FIGURE 5.3

SR latch with NOR gates

186

Chapter § Synchronous Sequential Logic

{a) Logic diagram

FIGURE 5.4
SR latch with NAND gates

to the § input causes output Q to go to |, putting the latch in the set state. When the § input goes
back to 1. the circuit remains in the set state. After both inputs go back to 1, we are allowed to
change the state of the latch by placing a 0 in the R input. This action causes the circuit to go
10 the reset state and stay there even after both inputs return to 1. The condition that is forbid-
den for the NAND latch is both inputs being equal to 0 at the same time, an input combination
that should be avoided.

In comparing the NAND with the NOR latch, note that the input signals for the NAND re-
quire the complement of those values used for the NOR latch. Because the NAND latch requires
a0 signal to change its state, it is sometimes referred to as an S’ R’ latch. The primes (or, some-
times, bars over the letters) designate the fact that the inputs must be in their complement form
to activate the circuit.

The operation of the basic SR latch can be modified by providing an additional input sig-
nal that determines (controls) when the state of the latch can be changed. An SR latch with a
control input is shown in Fig. 5.5. It consists of the basic SR latch and two additional NAND
gates. The control input En acts as an enable signal for the other two inputs. The outputs of the
NAND gates stay at the logic-1 level as long as the enable signal remains at 0. This is the qui-
escent condition for the SR latch. When the enable input goes to 1, information from the § or
R input is allowed to affect the latch. The set state is reached withS = 1, R = 0.and En = |
(active-high enabled). To change to the reset state, the inputs must be § = 0. R = |, and

Next state of ¢

No change

No change

Q = O reset state
Q = 1:set slate

R ——— g‘l
_——o oM |t
—_—a—o e

Indeterminate

(a) Logic Jiagram (b) Function table

FIGURE 5.5
SR latch with control input

Section 5.3 Storage Elements: Latches 187

En D | Next state of Q

En

0 X | Nochange
1 0 | @ =0:resetstate
1 1 | @=1;setstate

(a) Logic diagram (b) Function table

FIGURE 5.6
D latch

En = 1. In either case, when En returns to 0, the circuit remains in its current state. The con-
trol input disables the circuit by applying 0 to En, so that the state of the output does not change
regardless of the values of § and R. Moreover, when En = 1 and both the S and R inputs are
equal to 0, the state of the circuit does not change. These conditions are listed in the function
table accompanying the diagram.

An indeterminate condition occurs when all three inputs are equal to 1. This condition places
0’s on both inputs of the basic SR latch, which puts it in the undefined state. When the enable
input goes back to 0, one cannot conclusively determiné the next state, because it depends on
whether the S or R input goes to 0 first. This indeterminate condition makes this circuit diffi-
cult to manage. and it is seldom used in practice. Nevertheless, it is an important circuit because
other useful latches and flip-flops are constructed from it.

D Latch (Transparent Latch)

One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to
ensure that inputs § and R are never equal to 1 at the same time. This is done in the D latch,
shown in Fig. 5.6. This latch has only two inputs: D (data) and En (enable). The D input goes
directly to the § input, and its complement is applied to the R input. As long as the enable input
is at 0, the cross-coupled SR latch has both inputs at the | level and the circuit cannot change
state regardless of the value of D. The D input is sampled when En = 1. 1If D = 1, the Q out-
put goes to 1, placing the circuit in the set state. If D = 0, output Q goes to 0, placing the cir-
cuit in the reset state.

The D latch receives that designation from its ability to hold data in its internal storage. It
is suited for use as a temporary storage for binary information between a unit and its environ-
ment. The binary information present at the data input of the D latch is transferred to the Q out-
put when the enable input is asserted. The output follows changes in the data input as long as
the enable input is asserted. This situation provides a path from input D to the output, and for
this reason, the circuit is often called a rransparent latch. When the enable input signal is de-
asserted, the binary information that was present at the data input at the time the transition oc-
curred is retained (i.e., stored) at the Q output until the enable input is asserted again. Note that

188 Chapter 5 Synchronous Sequential Logic

—n — — D _
PR . p—— —_k > En o
SR SR D

FIGURE 5.7

Graphic symbols for latches

an inverter could be placed at the enable input. Then, depending on the physical circuit, the ex-
ternal enabling signal will be a value of 0 (active low) or | (active high).

The graphic symbols for the various latches are shown in Fig. 5.7. A latch is designated by
a rectangular block with inputs on the left and outputs on the right. One output designates the
normal output, and the other (with the bubble designation) designates the complement output.
The graphic symbol for the SR latch has inputs § and R indicated inside the block. In the case
of a NAND gate laich, bubbles are added to the inputs to indicate that setting and resetting
ocecur with a logic-0 signal, The graphic symbol for the D latch has inputs D and En indicated
inside the block.

5.4 STORAGE ELEMENTS: FLIP-FLOPS

The state of a latch or flip-flop is switched by a change in the control input. This momentary
change is called a rrigger, and the transition it causes is said to trigger the flip-flop. The D
latch with pulses in its control input is essentially a flip-flop that is triggered every time the pulse
goes 1o the logic-1 level. As long as the pulse input remains at this level, any changes in the
data input will change the output and the state of the latch.

As seen from the block diagram of Fig. 5.2, a sequential circuit has a feedback path from the
outputs of the flip-flops to the input of the combinational circuit. Consequently, the inputs of the
flip-flops are derived in part from the outputs of the same and other flip-flops. When latches are
used for the storage elements, a serious difficulty arises. The state transitions of the latches start
as soon as the clock pulse changes to the logic-1 level. The new state of a latch appears at the
output while the pulse is still active. This output is connected to the inputs of the latches through
the combinational circuit. If the inputs applied to the latches change while the clock pulse is still
at the logic-1 level, the latches will respond to new values and a new output state may occur. The
result is an unpredictable situation, since the state of the latches may keep changing for as long
as the clock pulse stays at the active level. Because of this unreliable operation, the output of a
latch cannot be applied directly or through combinational logic to the input of the same or an-
other latch when all the latches are triggered by a common clock source.

Flip-flop circuits are constructed in such a way as to make them operate properly when they
are part of a sequential circuit that employs a common clock. The problem with the latch is that
it responds 1o a change in the level of a clock pulse. As shown in Fig. 5.8(a), a positive level
response in the enable input allows changes in the output when the D input changes while the

Section 5.4 Storage Elements: Flip-Flops 189

LT

(a) Response to positive level

' A T A

(b) Positive-edge response

O S

(c) Negative-edge response

FIGURE 5.8
Clock response in latch and flip-flop

clock pulse stays at logic 1. The key to the proper operation of a flip-flop is to trigger it only
during a signal transition. This can be accomplished by eliminating the feedback path that is
inherent in the operation of the sequential circuit using latches. A clock pulse goes through
two transitions: from 0 to 1 and the return from 1 to 0. As shown in Fig. 5.8, the positive tran-
sition is defined as the positive edge and the negative transition as the negative edge. There are
two ways that a latch can be modified to form a flip-flop. One way is to employ two latches in
a special configuration that isolates the output of the flip-flop and prevents it from being af-
fected while the input to the flip-flop is changing. Another way is to produce a flip-flop that
triggers only during a signal transition (from O to 1 or from 1 to 0) of the synchronizing signal
(clock) and is disabled during the rest of the clock pulse. We will now proceed to show the im-
plementation of both types of flip-flops.

Edge-Triggered D Flip-Flop

The construction of a D flip-flop with two D latches and an inverter is shown in Fig. 5.9, The
first latch is called the master and the second the slave. The circuit samples the D input and changes
its output Q only at the negative edge of the synchronizing or controlling clock (designated as

Clk >o

FIGURE 5.9
Master—slave D flip-flop

190

Chapter 5 Synchronous Sequential Logic

Clk). When the clock is 0, the output of the inverter is 1. The slave latch is enabled. and its out-
put Q is equal to the master output Y. The master latch is disabled because Clk = 0. When the
input pulse changes to the logic-1 level, the data from the external D input are transferred to
the master. The slave. however, is disabled as long as the clock remains at the | level. because
its enable input is equal to 0. Any change in the input changes the master output at ¥, but can-
not affect the slave output. When the clock pulse returns to 0. the master is disabled and is iso-
lated from the D input. At the same time, the slave is enabled and the value of ¥ is transferred
to the output of the flip-flop at Q. Thus, a change in the output of the flip-flop can be triggered
only by and during the transition of the clock from 1 to 0.

The behavior of the master—slave flip-flop just described dictates that (1) the output may
change only once. (2) a change in the output is triggered by the negative edge of the clock, and
(3) the change may occur only during the clock’s negative level. The value that is produced at
the output of the flip-flop is the value that was stored in the master stage immediately before
the negative edge occurred. It is also possible to design the circuit so that the flip-flop output
changes on the positive edge of the clock. This happens in a flip-flop that has an additional in-
verter between the Clk terminal and the junction between the other inverter and input En of the
master latch. Such a flip-flop is triggered with a negative pulse, so that the negative edge of the
clock affects the master and the positive edge affects the slave and the output terminal.

Another construction of an edge-triggered D flip-flop uses three SR latches as shown in
Fig. 5.10. Two latches respond to the external D (data) and Clk (clock) inputs. The third latch
provides the outputs for the flip-flop. The S and R inputs of the output latch are maintained at
the logic-1 level when Clk = 0. This causes the output to remain in its present state. Input D

Cix ——s

Ny
=

FIGURE 5.10
D-type positive-edge-triggered flip-flop

Section 5.4 Storage Elements: Flip-Flops 191

(a) Positive-edge (a) Negative-edge
FIGURE 5.11
Graphic symbol for edge-triggered D flip-flop

may be equal to O or 1. If D = 0 when Clk becomes 1, R changes to 0. This causes the flip-
flop to go to the reset state, making Q = 0. If there is a change in the D input while Clk = 1,
terminal R remains at O because Q is 0. Thus, the flip-flop is locked out and is unresponsive to
further changes in the input. When the clock returns to 0, R goes to 1, placing the output latch
in the quiescent condition without changing the output. Similarly, if D = 1 when Clk goes
from 0 to 1, S changes to 0. This causes the circuit to go to the set state, making Q = 1. Any
change in D while Clk = | does not affect the output.

In sum, when the input clock in the positive-edge-triggered flip-flop makes a positive tran-
sition, the value of D is transferred to . A negative transition of the clock (i.e., from 1 to 0)
does not affect the output, nor is the output affected by changes in) when Clk is in the steady
logic-1 level or the logic-0 level. Hence, this type of flip-flop responds to the transition from
0 to 1 and nothing else.

The timing of the response of a flip-flop to input data and to the clock must be taken into
consideration when one is using edge-triggered flip-flops. There is a minimum time called the
setup time during which the D input must be maintained at a constant value prior to the oc-
currence of the clock transition. Similarly, there is a minimum time called the hold time dur-
ing which the D input must not change gfter the application of the positive transition of the clock.
The propagation delay time of the flip-flop is defined as the interval between the trigger edge
and the stabilization of the output to a new state. These and other parameters are specified in
manufacturers” data books for specific logic families.

The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 5.11. It is similar to
the symbol used for the D latch, except for the arrowheadlike symbol in front of the letter CIk,
designating a dynamic input. The dynamic indicator denotes the fact that the flip-flop responds
to the edge transition of the clock. A bubble outside the block adjacent to the dynamic indica-
tor designates a negative edge for triggering the circuit. The absence of a bubble designates a
positive-edge response.

Other Flip-Flops

Very large-scale integration circuits contain thousands of gates within one package. Circuits are
constructed by interconnecting the various gates to provide a digital system. Each flip-flop is con-
structed from an interconnection of gates. The most economical and efficient flip-flop con-
structed in this manner is the edge-triggered D flip-flop. because it requires the smallest number

192

Chapter 5 Synchronous Sequential Logic

— -

\ Iy Yo Q —_— T —
k—po—177 A —Hon
. Clk ——{> Clk = o — K p—_
(a) Circuit diagram (b) Graphic symbol
FIGURE 5.12
JK flip-flop

of gates, Other types of flip-flops can be constructed by using the D flip-flop and external logic.
Two flip-flops less widely used in the design of digital systems are the JK and 7 flip-flops.

There are three operations that can be performed with a flip-flop: Set it to 1, reset it to 0, or
complement its output. With only a single input, the D flip-flop can set or reset the output, de-
pending on the value of the D input immediately before the clock transition. Synchronized by
a clock signal, the JK flip-flop has two inputs and performs all three operations. The circuit di-
agram of a JK flip-flop constructed with a D flip-flop and gates is shown in Fig. 5.12(a). The
J input sets the flip-flop to 1, the K input resets it to 0, and when both inputs are enabled, the
output is complemented. This can be verified by investigating the circuit applied to the D input:

D=JQ +K'Q
WhenJ = land K = 0,D = Q" + Q = I, s0 the next clock edge sets the output to 1. When
J = 0and K = 1. D = 0, sothe next clock edge resets the output to 0, When both / = K = |
and D = @', the next clock edge complements the output. WhenbothJ = K = Oand D = Q.
the clock edge leaves the output unchanged. The graphic symbol for the JK flip-flop is shown
in Fig. 5.12(b). It is similar to the graphic symbol of the D flip-flop, except that now the in-
puts are marked J and K.,

The T (toggle) flip-tlop is a complementing flip-flop and can be obtained from a JK flip-
flop when inputs J and K are tied together. This is shown in Fig. 5.13(a). When
T =0(J = K = 0), aclock edge does not change the output. WhenT = 1 (J = K = 1),
a clock edge complements the output. The complementing flip-flop is useful for designing bi-
nary counters.

The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as shown in
Fig. 5.13(b). The expression for the D input is

D=T®Q=TQ +T'Q

When 7" = 0, D = Q and there is no change in the output. When T = 1, D = Q' and the out-
put complements. The graphic symbol for this flip-flop has a T symbol in the input.

Section 5.4 Storage Elements: Flip-Flops 193

T o e —T S
—1> Clk 55
£ p— —bm
(a) From JX flip-flop (b) From D flip-flop (¢) Graphic symbol
FIGURE 5.13
T flip-flop

Characteristic Tables

A characteristic table defines the logical properties of a flip-flop by describing its operation in
tabular form. The characteristic tables of three types of flip-flops are presented in Table 5.1.
They define the next state (i.e., the state that results from a clock transition) as a function of
the inputs and the present state. Q(7) refers to the present state (i.e., the state present prior to
the application of a clock edge). Q(¢ + 1) is the next state one clock period later. Note that the
clock edge input is not included in the characteristic table, but is implied to occur between
times 7and r + 1. Thus, Q(t) denotes the state of the flip-flop immediately before the clock edge,
and Q¢ + 1) denotes the state that results from the clock transition,

The characteristic table for the JK flip-flop shows that the next state is equal to the present
state when inputs J and K are both equal to 0. This condition can be expressed as
Q(t + 1) = Q(t), indicating that the clock produces no change of state. When K = 1 and

Table 5.1
Flip-Flop Characteristic Tables

JK Flip-Flop

] K |Qt+1)
0 0 | O No change
0 1 |0 Reset
1 0|1 Set
1 1 |0'(1) Complement
D Flip-Flop T Flip-Flop
D Qt+1) T Qt+1)
0 |0 Reset 4] Q) No change
1|1 Set 1 0'(1) Complement

194 Chapter 5 Synchronous Sequential Logic

J = 0, the clock resets the flip-flopand Q(r + 1) = 0. WithJ = | and K = 0, the flip-floj
setsand Q(r + 1) = 1. When both J and K are equal to 1, the next state changes to the com
plement of the present state, a transition that can be expressed as Q1 + 1) = Q'(1).

The next state of a D flip-flop is dependent only on the D input and is independent of the
present state. This can be expressed as Q(r + 1) = D. It means that the next-state value is equa
to the value of D. Note that the D flip-flop does not have a “no-change™ condition. Such a con:
dition can be accomplished either by disabling the clock or by operating the clock by having
the output of the flip-flop connected into the D input. Either method effectively circulates the
output of the flip-flop when the state of the flip-flop must remain unchanged.

The characteristic table of the 7 flip-flop has only two conditions: When 7' = 0, the clock edge
does not change the state: when T = |, the clock edge complements the state of the flip-flop.

Characteristic Equations

The logical properties of a flip-flop, as described in the characteristic table, can be expressed al-
gebraically with a characteristic equation. For the D flip-flop, we have the characteristic equation

Qi +1)=D

which states that the next state of the output will be equal to the value of input D in the pres-
ent state. The characteristic equation for the JK flip-flop can be derived from the characteris-
tic table or from the circuit of Fig. 5.12. We obtain

Qr+1)=4Q + K'Q

where Q is the value of the flip-flop output prior to the application of a clock edge. The char-
acteristic equation for the 7 flip-flop is obtained from the circuit of Fig. 5.13:

Qi+ 1)=T@&Q=TQ' +T'Q
Direct Inputs

Some flip-flops have asynchronous inputs that are used to force the flip-flop to a particular
state independently of the clock. The input that sets the flip-flop to 1 is called preser or direct
set. The input that clears the flip-flop to 0 is called clear or direct reset. When power is turned
on in a digital system. the state of the flip-flops is unknown. The direct inputs are useful for
bringing all flip-flops in the system to a known starting state prior to the clocked operation.

A positive-edge-trig gered D flip-flop with active-low asynchronous reset is shown in Fig. 5.14.
The circuit diagram is the same as the one in Fig. 5.10, except for the additional reset input con-
nections to three NAND gates. When the reset input is 0, it forces output Q' to stay at 1, which,
in turn, clears output O to 0, thus resetting the flip-flop. Two other connections from the reset
input ensure that the S input of the third SR latch stays at logic | while the reset input is at 0,
regardless of the values of D and CIk.

The graphic symbol for the D flip-flop with a direct reset has an additional input marked with
R. The bubble along the input indicates that the reset is active at the logic-0 level. Flip-flops
with a direct set use the symbol § for the asynchronous set input.

The function table specifies the operation of the circuit. When R = 0, the output is reset to 0,
This state is independent of the values of D or Clk. Normal clock operation can proceed only

Section 5.5 Analysis of Clocked Sequential Circuits 195

Clock —¢

Reset
(a) Circuit diagram
Dara D ——1
R Clk D d
Clock D> Clk i
o— Q' 0 X X|01
R 0 ; 0fo 1
0 1 1 0
Re.:c:——T —_——
(b) Graphic symbol (b) Function table
FIGURE 5.14

D flip-flop with asynchronous reset

after the reset input goes to logic 1. The clock at Clk is shown with an upward arrow to indi-
cate that the flip-flop triggers on the positive edge of the clock. The value in D is transferred
to Q with every positive-edge clock signal, provided that R = 1.

5.5 ANALYSIS OF CLOCKED
SEQUENTIAL CIRCUITS

Analysis describes what a given circuit will do under certain operating conditions. The be-
havior of a clocked sequential circuit is determined from the inputs. the outputs, and the state
of its flip-flops. The outputs and the next state are both a function of the inputs and the present

196 Chapter 5 Synchronous Sequential Logic

state. The analysis of a sequential circuit consists of obtaining a table or a diagram for the time
sequence of inputs, outputs, and internal states, It is also possible to write Boolean expressions
that describe the behavior of the sequential circuit. These expressions must include the neces-
sary time sequence, either directly or indirectly.

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops with
clock inputs. The flip-flops may be of any type. and the logic diagram may or may not include
combinational circuit gates. In this section, we introduce an algebraic representation for spec-
ifying the next-state condition in terms of the present state and inputs. A state table and state
diagram are then presented to describe the behavior of the sequential circuit. Another algebraic rep-
resentation is introduced for specifying the logic diagram of sequential circuits. Examples are
used to illustrate the various procedures,

State Equations

The behavior of a clocked sequential circuit can be described algebraically by means of state
equations. A szate equation (also called a transition equation) specifies the next state as a func-
tion of the present state and inputs. Consider the sequential circuit shown in Fig. 5.15. It consists

B> 1

> Clk
o ol |
B—
> Ctk
et}
Clock

i
Do

FIGURE 5.15
Example of sequential circuit

Section 5.5 Analysis of Clocked Sequential Circuits 197

of two D flip-flops A and B, an input x and an output y. Since the D input of a flip-flop deter-
mines the value of the next state (i.e., the state reached after the clock transition), it is possible
to write a set of state equations for the circuit:
Alr + 1) = A()x(t) + B(1)x(1)
Bt + 1) = A'(t)x(r)
A state equation is an algebraic expression that specifies the condition for a flip-flop state tran-
sition. The left side of the equation, with (r + 1). denotes the next state of the flip-flop one
clock edge later. The right side of the equation is a Boolean expression that specifies the pres-
ent state and input conditions that make the next state equal to 1. Since all the variables in the
Boolean expressions are a function of the present state, we can omit the designation (1) after
each variable for convenience and can express the state equations in the more compact form
A(t +1) = Ax + Bx
B(t+1)=A'x
The Boolean expressions for the state equations can be derived directly from the gates that
form the combinational circuit part of the sequential circuit, since the D values of the combi-

national circuit determine the next state. Similarly, the present-state value of the output can be
expressed algebraically as

y(r) = [A(r) + B(1)lx'(1)
By removing the symbol (1) for the present state, we obtain the output Boolean equation:

y= (A + B)x'

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (some-
times called a rransition table). The state table for the circuit of Fig. 5.15 is shown in Table 5.2,

Table 5.2

State Table for the Circuit of Fig. 5.15

Present Next
State Input State Output
A B X A y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 10 0
| 0 0 0 |
11 1 10 0

198

Chapter 5 Synchronous Sequential Logic

The table consists of four sections labeled present state, input, next state, and output. The
present-state section shows the states of flip-flops A and B at any given time 1. The input sec-
tion gives a value of x for each possible present state, The next-state section shows the states
of the flip-flops one clock cycle later, at time 1 + 1. The output section gives the value of y at
time 1 for each present state and input condition.

The derivation of a state table requires listing all possible binary combinations of present
states and inputs. In this case, we have eight binary combinations from 000 to 111, The next-
state values are then determined from the logic diagram or from the state equations. The next
state of flip-flop A must satisfy the state equation

A(r + 1) = Ax + Bx

The next-state section in the state table under column A has three 1's where the present state
of A and input x are both equal to 1 or the present state of B and input x are both equal to 1.
Similarly. the next state of flip-flop B is derived from the state equation

B(r+1) = A'x

and is equal to | when the present state of A is 0 and input x is equal to 1. The output column
is derived from the output equation

y= Ax' + Bx'

The state table of a sequential circuit with D-type flip-flops is obtained by the same procedure
outlined in the previous example. In general, a sequential circuit with m flip-flops and n inputs
needs 2™ *" rows in the state table, The binary numbers from O through 2™ " — | are listed
under the present-state and input columns, The next-state section has m columns, one for each
flip-flop. The binary values for the next state are derived directly from the state equations. The
output section has as many columns as there are output variables. Its binary value is derived
from the circuit or from the Boolean function in the same manner as in a truth table,

It is sometimes convenient 1o express the state table in a slightly different form having only
three sections: present state, next state, and output. The input conditions are enumerated under
the next-state and output sections, The state table of Table 5.2 is repeated in Table 5.3 in this
second form. For each present state, there are two possible next states and outputs, depending on
the value of the input. One form may be preferable to the other, depending on the application.

Table 5.3
Second Form of the State Table
" Next State Output
State x=0 x=1 x=0 x=1
A B AB AB y y
0 0 0 0 0 1 (] 0
0 | 0 0 1 1 | 0
| 0 0o o0 1 0 1 0
i | 0 0 1 0 | 0

Section 5.5 Analysis of Clocked Sequential Circuits 199

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

State Diagram

The information available in a state table can be represented graphically in the form of a state
diagram. In this type of diagram, a state is represented by a circle, and the (clock-triggered)
transitions between states are indicated by directed lines connecting the circles. The state dia-
gram of the sequential circuit of Fig. 5.15 is shown in Fig. 5.16. The state diagram provides the
same information as the state table and is obtained directly from Table 5.2 or Table 5.3. The bi-
nary number inside each circle identifies the state of the flip-flops. The directed lines are la-
beled with two binary numbers separated by a slash. The input value during the present state is
labeled first, and the number after the slash gives the output during the present state with the given
input. (It is important to remember that the bit value listed for the output along the directed line
occurs during the present state and with the indicated input, and has nothing to do with the tran-
sition to the next state.) For example, the directed line from state 00 to 01 is labeled 1/0, mean-
ing that when the sequential circuit is in the present state 00 and the input is 1, the output is 0.
After the next clock cycle, the circuit goes to the next state, 01. If the input changes to 0, then
the output becomes 1, but if the input remains at 1, the output stays at 0. This information is ob-
tained from the state diagram along the two directed lines emanating from the circle with state
01. A directed line connecting a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram, except in the manner of rep-
resentation. The state table is easier to derive from a given logic diagram and the state equa-
tion. The state diagram follows directly from the state table. The state diagram gives a pictorial
view of state transitions and is the form more suitable for human interpretation of the circuit’s
operation. For example, the state diagram of Fig. 5.16 clearly shows that, starting from state
00, the output is 0 as long as the input stays at 1. The first O input after a string of 1's gives an
output of | and transfers the circuit back to the initial state, 00. The machine represented by
the state diagram acts to detect a zero in the bit stream of data.

Flip-Flop Input Equations

The logic diagram of a sequential circuit consists of flip-flops and gates. The interconnections
among the gates form a combinational circuit and may be specified algebraically with Boolean

200 Chapter 5 Synchronous Sequential Logic

expressions. The knowledge of the type of flip-flops and a list of the Boolean expressions of
the combinational circuit provide the information needed to draw the logic diagram of the se-
quential circuit. The part of the combinational circuit that generates external outputs is de-
scribed algebraically by a set of Boolean functions called ourput equations. The part of the
circuit that generates the inputs to flip-flops is described algebraically by a set of Boolean func-
tions called flip-flop input equations (or, sometimes, excitation equations). We will adopt the
convention of using the flip-flop input symbol to denote the input equation variable and a sub-
script to designate the name of the flip-flop output, For example, the following input equation
specifies an OR gate with inputs x and y connected to the D input of a flip-flop whose output
is labeled with the symbol Q:

Dy=% 43

The sequential circuit of Fig. 5.15 consists of two D flip-flops A and B, an input x, and an
output y, The logic diagram of the circuit can be expressed algebraically with two flip-flop
input equations and an output equation:

Dy = Ax + Bx
DB' = A'x
y=(A+ B)x'

The three equations provide the necessary information for drawing the logic diagram of the
sequential circuit. The symbol Dy specifies a D flip-flop labeled A. Dy specifies a second D
flip-flop labeled B. The Boolean expressions associated with these two variables and the ex-
pression for output y specify the combinational circuit part of the sequential circuit.

The flip-flop input equations constitute a convenient algebraic form for specifying the logic
diagram of a sequential circuit. They imply the type of flip-flop from the letter symbol, and they
fully specify the combinational circuit that drives the flip-flops. Note that the expression for
the input equation for a D flip-flop is identical to the expression for the corresponding state equa-
tion. This is because of the characteristic equation that equates the next state to the value of the
D input: Q(1 + 1) = Dg.

Analysis with D Flip-Flops

We will summarize the procedure for analyzing a clocked sequential circuit with D flip-flops by
means of a simple example. The circuit we want to analyze is described by the input equation

DA — A@.rEB_v

The D4 symbol implies a D flip-flop with output A. The x and y variables are the inputs to the
circuit. No output equations are given, which implies that the output comes from the output of
the flip-flop. The logic diagram is obtained from the input equation and is drawn in Fig. 5.17(a).

The state table has one column for the present state of flip-flop A, two columns for the two in-
puts, and one column for the next state of A. The binary numbers under Axy are listed from 000
through 111 as shown in Fig. 5.17(b). The next-state values are obtained from the state equation

At +1)=ABxDBy

Section 5.5 Analysis of Clocked Sequential Circuits 201

Present Next
state Inputs state
A xy A
0 00 0
! 0 01 1
x B A 0 10 1
¥ o ; 0 11 0
Ol 1 oo 1
P Clk ¥ 51 &
S L 10 0
Clock Fiisaiis T
(a) Circuit diagram (b) State table
M.ll(t\tf_\m'w ;) 00. 11
\ v
T =
01,10

{c) State diagram

FIGURE 5.17
Sequential circuit with D flip-flop

The expression specifies an odd function and is equal to | when only one variable is | or when
all three variables are 1. This is indicated in the column for the next state of A.

The circuit has one flip-flop and two states. The state diagram consists of two circles, one
for each state as shown in Fig. 5.17(c). The present state and the output can be either O or 1, as
indicated by the number inside the circles. A slash on the directed lines is not needed, because
there is no output from a combinational circuit. The two inputs can have four possible combi-
nations for each state. Two input combinations during each state transition are separated by a
comma to simplify the notation.

Analysis with JK Flip-Flops

A state table consists of four sections: present state, inputs, next state, and outputs. The
first two are obtained by listing all binary combinations, The output section is determined
from the output equations. The next-state values are evaluated from the state equations. For
a D-type flip-flop, the state equation is the same as the input equation. When a flip-flop other
than the D type is used, such as JK or T, it is necessary to refer to the corresponding char-
acteristic table or characteristic equation to obtain the next-state values. We will illustrate
the procedure first by using the characteristic table and again by using the characteristic
equation,

202

Chapter 5 Synchronous Sequential Logic

The next-state values of a sequential circuit that uses JK- or T-type flip-flops can be derived
as follows:

1. Determine the flip-flop input equations in terms of the present state and input variables.

2. List the binary values of each input equation.

3. Use the corresponding flip-flop characteristic table to determine the next-state values in
the state table.

As an example, consider the sequential circuit with two JK flip-flops A and B and one input
x, as shown in Fig. 5.18, The circuit has no outputs; therefore, the state table does not need an
output column. (The outputs of the flip-flops may be considered as the outputs in this case.)
The circuit can be specified by the flip-flop input equations

Ji=B K,;=Bx
Jg=x" Kg=A'x+ Ax' = Adx

The state table of the sequential circuit is shown in Table 5.4. The present-state and input
columns list the eight binary combinations. The binary values listed under the columns labeled
flip-flop inputs are not part of the state table, but they are needed for the purpose of evaluating
the next state as specified in step 2 of the procedure. These binary values are obtained di-
rectly from the four input equations in a manner similar to that for obtaining a truth table
from a Boolean expression. The next state of each flip-flop is evaluated from the correspon-
ding J and K inputs and the characteristic table of the JK flip-flop listed in Table 5.1. There
are four cases to consider. When J = 1 and K = 0, the next state is 1. When J = 0 and

Clock

FIGURE 5.18
. Sequential circuit with JK flip-flop

Section 5.5 Analysis of Clocked Sequential Circuits 203

Table 5.4
State Table for Sequential Circuit with JK Flip-Flops
Present Next Flip-Flop
State Input State Inputs
A B X A B h. “4 jg Ks
0 0 0 0 I 0 0 10
0 0 I 0 0 0 0 0 1
0 I 0 1 I I I 10
0 I 1] 0 1 0 0 1
1 0 0 1 1 0 0] 1
1 0 1 1 0 0 0 0 0
l 1 0 0 0 1 l 1 1
| I I] I 1 0 0 0

K = 1, the next state is 0. When J = K = 0, there is no change of state and the next-state
value is the same as that of the present state. When J = K = [, the next-state bit is the com-
plement of the present-state bit. Examples of the last two cases occur in the table when the
present state AB is 10 and input x is 0. JA and KA are both equal to 0 and the present state of
A is 1. Therefore, the next state of A remains the same and is equal to 1. In the same row of
the table, /B and KB are both equal to 1. Since the present state of B is 0, the next state of B
is complemented and changes to 1.

The next-state values can also be obtained by evaluating the state equations from the char-
acteristic equation. This is done by using the following procedure:

1. Determine the flip-flop input equations in terms of the present state and input variables,

2. Substitute the input equations into the flip-flop characteristic equation to obtain the state
equations.

3. Use the corresponding state equations to determine the next-state values in the state table.

The input equations for the two JK flip-flops of Fig. 5.18 were listed a couple of paragraphs
ago. The characteristic equations for the flip-flops are obtained by substituting A or B for the
name of the flip-flop, instead of Q:

Alt+1)=JA' +K'A
B(t+1)=JB" + K'B
Substituting the values of /4 and K 4 from the input equations, we obtain the state equation for A:
A(t + 1) = BA' + (Bx')'A = A'B + AB' + Ax

The state equation provides the bit values for the column headed “Next State” for A in the state
table. Similarly. the state equation for flip-flop B can be derived from the characteristic equa-
tion by substituting the values of Jg and Kpg:

B(t+1)=x'B"+ (A@x)'B = B'x" + ABx + A'Bx’

204 Chapter 5 Synchronous Sequential Logic

FIGURE 5.19
State diagram of the circuit of Fig. 5.18

The state equation provides the bit values for the column headed “Next State™ for B in the state
table. Note that the columns in Table 5.4 headed “Flip-Flop Inputs” are not needed when state
equations are used.

The state diagram of the sequential circuit is shown in Fig. 5.19. Note that since the circuit
has no outputs, the directed lines out of the circles are marked with one binary number only,
to designate the value of input x.

Analysis With T Flip-Flops

The analysis of a sequential circuit with T flip-flops follows the same procedure outlined for
JK flip-flops. The next-state values in the state table can be obtained by using either the char-
acteristic table listed in Table 5.1 or the characteristic equation

Qt+1)=T®Q=T'Q+TQ'

Now consider the sequential circuit shown in Fig. 5.20. It has two flip-flops A and B. one input
x, and one output y and can be described algebraically by two input equations and an output

equation:
Ty = Bx
Tg = X
y=AB

The state table for the circuit is listed in Table 5.5. The values for y are obtained from the out-
put equation. The values for the next state can be derived from the state equations by substi-
tuting T4 and T in the characteristic equations, yielding
A(t +1) = (Bx)'A+ (Bx)A" = AB’ + Ax" + A'Bx
B(r+1)=x®B

Section 5.5 Analysis of Clocked Sequential Circuits

> Cli

A

> Clk
R

|

Clock reset
(a) Circuit diagram
FIGURE 5.20

Sequential circuit with T flip-flops

(b) State diagram

205

The next-state values for A and B in the state table are obtained from the expressions of the two

state equations.

The state diagram of the circuit is shown in Fig. 5.20(b). As long as input x is equal to 1,
the circuit behaves as a binary counter with a sequence of states 00, 01, 10, 11, and back to 00.

Table 5.5

State Table for Sequential Circuit with T Flip-Flops

Present Next
State Input State OQutput
A B X A B y
0o 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0o 1 1 1 0 0
1 0 0 1 0 0]
1 0 1 1 1 0
1 1 0 1 1 1
1 1 ! 0 0 !

206 Chapter 5 Synchronous Sequential Logic

When x = 0, the circuit remains in the same state. Output y is equal to | when the present
state is 11. Here, the output depends on the present state only and is independent of the input.
The two values inside each circle and separated by a slash are for the present state and output.

Mealy and Moore Models of Finite State Machines

The most general model of a sequential circuit has inputs, outputs, and internal states. It is cus-
tomary to distinguish between two models of sequential circuits: the Mealy model and the
Moore model. Both are shown in Figure 5.21. They differ only in the way the output is gener-
ated. In the Mealy model, the output is a function of both the present state and the input. In the
Moore model, the output is a function of only the present state. A circuit may have both types
of outputs. The two models of a sequential circuit are commonly referred 1o as a finite state ma-
chine, abbreviated FSM. The Mealy model of a sequential circuit is referred to as a Mealy
FSM or Mealy machine. The Moore model is referred to as a Moore FSM or Moore machine.

An example of a Mealy model is given in Fig. 5.15. Output y is a function of both input x
and the present state of A and B. The corresponding state diagram in Fig. 5.16 shows both the
input and output values, separated by a slash along the directed lines between the states.

An example of a Moore model is given in Fig. 5.18. Here, the output is a function of the pres-
ent state only. The corresponding state diagram in Fig. 5.19 has only inputs marked along the

Mealy Machine

Qutputs
(Mealy-typei

Moore Machine

Outputs
{Moare-1ype)

(b)

FIGURE 5.21
Block diagrams of Mealy and Moore state machines

Section 5.6 Synthesizable HDL Models of Sequential Circuits 207

directed lines. The outputs are the {lip-flop states marked inside the circles. Another example
of a Moore model is the sequential circuit of Fig. 5.20. The output depends only on flip-flop
values, and that makes it a function of the present state only. The input value in the state dia-
gram is labeled along the directed line, but the output value is indicated inside the circle together
with the present state.

In a Moore model, the outputs of the sequential circuit are synchronized with the clock, be-
cause they depend only on flip-flop outputs that are synchronized with the clock. In a Mealy
model, the outputs may change if the inputs change during the clock cycle. Moreover, the out-
puts may have momentary false values because of the delay encountered from the time that the
inputs change and the time that the flip-flop outputs change. In order to synchronize a Mealy-
type circuit, the inputs of the sequential circuit must be synchronized with the clock and the
outputs must be sampled immediately before the clock edge. The inputs are changed at the in-
active edge of the clock to ensure that the inputs to the flip-flops stabilize before the active edge
of the clock occurs, Thus, the output of the Mealy machine is the value that is present imme-
diately before the active edge of the clock.

5.6 SYNTHESIZABLE HDL MODELS
OF SEQUENTIAL CIRCUITS

The Verilog hardware description language (HDL) was introduced in Section 3.10. Combina-
tional circuits were described in Section 4.12, and behavioral modeling with Verilog was in-
troduced in that section as well. Behavioral models are abstract representations of the
functionality of digital hardware. Designers write behavioral models to quickly describe how
a circuit is to operate, without having 1o first specify its hardware. In this section, we continue
the discussion of behavioral modeling and present description and examples of flip-flops and
sequential circuits in preparation for modeling more complex circuits.

Behavioral Modeling

There are two kinds of abstract behaviors in the Verilog HDL. Behavior declared by the key-
word initial is called single-pass behavior and specifies a single statement or a block statement
(1.e., a list of statements enclosed by either a begin ... end or a fork ... join keyword pair).
A single-pass behavior expires after the associated statement executes. In practice, designers
use single-pass behavior primarily to prescribe stimulus signals in a test bench—never to model
the behavior of a circuit—because synthesis tools do not accept descriptions that use the initial
statement. The always keyword declares a cyclic behavior: Both types of behaviors begin ex-
ecuting when the simulator launches at time ¢ = 0. The initial behavior expires after its state-
ment executes; the always behavior executes and reexecutes indefinitely, until the simulation
is stopped. A module may contain an arbitrary number of initial or always behavioral state-
ments. They execute concurrently with respect to each other starting at time 0 and may inter-
act through common variables. Here's a word description of how an always statement works
for a simple model of a D flip-flop: Whenever the rising edge of the clock occurs, if the reset
input is asserted, the output g gets 0: otherwise the output gets the value of the input D. The
execution of statements triggered by the clock is repeated until the simulation ends. We’ll see
shortly how to write this description in Verilog.

208

Chapter 5 Synchronous Sequential Logic

An initial behavioral statement executes only once. It begins its execution at the start of sim-
ulation and expires after all of its statements have completed execution. As mentioned at the
end of Section 4.12, the initial statement is useful for generating input signals to simulate a de-
sign. In simulating a sequential circuit, it is necessary to generate a clock source for triggering
the flip-flops. The following are two possible ways to provide a free-running clock that oper-
ates for a specified number of cycles:

initial initial
begin begin
clock = 1'b0; clock = 1'b0;
repeat (30) end
#10 clock = ~clock;
end initial 300 $finish;

always #10 clock = ~clock;

In the first version, the initial block contains two statements enclosed within the begin and end
keywords. The first statement sets clock to 0 at time = 0. The second statement specifies a loop
that reexecutes 30 times to wait 10 time units and then complement the value of clock. This pro-
duces 15 clock cycles, each with a cycle time of 20 time units. In the second version. the first init-
ial behavior has a single statement that sets clock to 0 at time = 0, and it then expires (causes
no further simulation activity). The second single-pass behavior declares a stopwatch for the sim-
ulation. The system task finish causes the simulation to terminate unconditionally after 300
time units have elapsed. Because this behavior has only one statement associated with it there
is no need to write the begin ... end keyword pair, After 10 time units, the always statement
repeatedly complements clock, providing a clock generator having a cycle time of 20 time units.
The three behavioral statements in the second example can be written in any order.
Here is another way to describe a free-running clock:

initial begin clock = 0; forever #10 clock = ~clock; end

This version, with two statements on one line, initializes the clock and then executes an in-
definite loop (forever) in which the clock is complemented after a delay of 10 time steps. Note
that the single-pass behavior never finishes executing and so does not expire. Another behav-
ior would have to terminate the simulation.

The activity associated with either type of behavioral statement can be controlled by a delay
operator that waits for a certain time or by an event control operator that waits for certain con-
ditions to become true or for specified events (changes in signals) to occur. Time delays spec-
ified with the # delay control operator are commonly used in single-pass behaviors. The delay
control operator suspends execution of statements until a specified time has elapsed. We've al-
ready seen examples of its use to specify signals in a test bench. Another operator. @. is called
the event control operator and is used to suspend activity until an event occurs. An event can
be an unconditional change in a signal value (e.g.. @ A) or a specified transition of a signal value
(e.g., @ (posedge clock)). The general form of this type of statement is

always @ (event control expression) begin
/! Procedural assignment statements that execute when the condition is met
end

Section 5.6 Synthesizable HDL Models of Sequential Circuits 209

The event control expression specifies the condition that must occur to launch execution of the
procedural assignment statements. The variables in the left-hand side of the procedural state-
ments must be of the reg data type and musl be declared as such. The right-hand side can be
any expression that produces a value using Verilog-defined operators,

The event control expression (also called the sensitivity list) specifies the events that must
occur to initiate execution of the procedural statements associated with the always block. State-
ments within the block execute sequentially from top to bottom. After the last statement exe-
cutes, the behavior waits for the event control expression to be satisfied. Then the statements
are executed again. The sensitivity list can specify level-sensitive events, edge-sensitive events,
or a combination of the two. In practice, designers do not make use of the third option, because
this third form is not one that synthesis tools are able to translate into physical hardware, Level-
sensitive events occur in combinational circuits and in latches. For example, the statement

always @ (AorBorC)

will initiate execution of the procedural statements in the associated always block if a change
oceurs in A, B, or C. In synchronous sequential circuits, changes in flip-flops occur only in re-
sponse to a transition of a clock pulse. The transition may be either a positive edge or a nega-
tive edge of the clock, but not both. Verilog HDL takes care of these conditions by providing
two keywords: posedge and negedge. For example, the expression

always @(posedge clock or negedge reset) 1 Verilog 1995

will initiate execution of the associated procedural statements only if the clock goes through a
positive transition or if reser goes through a negative transition. The 2001 and 2005 revisions
to the Verilog language allow a comma-separated list for the event control expression (or sen-
sitivity list):

always @(posedge clock, negedge reset) / Verilog 2001, 2005

A procedural assignment is an assignment of a logic value to a variable within an initial or
always statement. This is in contrast to a continuous assignment discussed in Section 4.12
with dataflow modeling. A continuous assignment has an implicit level-sensitive sensitivity list
consisting of all of the variables on the right-hand side of its assignment statement, The updating
of a continuous assignment is triggered whenever an event occurs in a variable listed on the
right-hand side of its expression, In contrast, a procedural assignment is made only when an
assignment statement is executed within a behavioral statement. For example. the clock sig-
nal in the preceding example was complemented only when the statement clock = ~clock
executed; the statement did not execute until 10 time units after the simulation began. It is im-
portant to remember that a variable having type reg remains unchanged until a procedural as-
signment is made to give it a new value.

There are two kinds of procedural assignments: blocking and nonblocking. The two are
distinguished by the symbols that they use. Blocking assignments use the symbol (=) as
the assignment operator, and nonblocking assignments use (< =) as the operator. Blocking
assignment statements are executed sequentially in the order they are listed in a block of
statements. Nonblocking assignments are executed concurrently by evaluating the set of
expressions on the right-hand side of the list of statements; they do not make assignments
to their left-hand sides until all of the expressions are evaluated. The two types of

210

Chapter 5 Synchronous Sequential Logic

assignments may be better understood by means of an illustration. Consider these two pro-
cedural blocking assignments:

B=A
C=B+1

The first statement transfers A into B. The second statement increments the value of B and
transfers the new value to C. At the completion of the assignments, C contains the value of
A+ 1L

Now consider the two statements as nonblocking assignments:

B<=A
C<=B+1

When the statements are executed, the expressions on the right-hand side are evaluated and
stored in a temporary location. The value of A is kept in one storage location and the value of
B + 1 in another. After all the expressions in the block are evaluated and stored, the assign-
ment to the targets on the left-hand side is made. In this case, C will contain the original value
of B, plus 1. A general rule is to use blocking assignments when sequential ordering is imper-
ative and in cyclic behavior that is level sensitive (i.e., in combinational logic). Use nonblocking
assignments when modeling concurrent execution (e.g., edge-sensitive behavior such as syn-
chronous, concurrent register transfers) and when modeling latched behavior. Nonblocking as-
signments are imperative in dealing with register transfer level design, as shown in Chapter 8.
They model the concurrent operations of physical hardware synchronized by a common clock.
Today's designers are expected to know what features of an HDL are useful in a practical way
and how to avoid features that are not. Following these rules will prevent conditions that lead
synthesis tools astray and create mismatches between the behavior of a model and the behav-
ior of physical hardware that is produced by a synthesis tool.

Flip-Flops and Latches

HDL Examples 5.1 through 5.4 show descriptions of various flip-flops and a D latch. The D
latch is transparent and responds to a change in data input with a change in output, as long as
the enable input is asserted. The module description of a D latch is shown in HDL Example 5.1.
It has two inputs, D and enable, and one output Q. Since Q is evaluated in a procedural state-
ment, it must be declared as reg type. Latches respond to input signal levels, so the two inputs
are listed without edge qualifiers in the event enable expression following the @ symbol in the
always statement. There is only one blocking procedural assignment statement. and it specifies
the transfer of input D to output Q if enable is true (logic 1). Note that this statement is exe-
cuted every time there is a change in D if enable is 1.

A D-type flip-flop is the simplest example of a sequential machine. HDL Example 5.2 de-
scribes two positive-edge D flip-flops in two modules. The first responds only to the clock; the
second includes an asynchronous reset input. Output Q must be declared as a reg data type in
addition to being listed as an output. This is because it is a target output in a procedural assign-
ment statement. The keyword posedge ensures that the transfer of input D into Q is synchronized
by the positive-edge transition of Clk. A change in D at any other time does not change Q.

Section 5.6 Synthesizable HDL Models of Sequential Circuits 21

HDL Example 5.1

/! Description of D latch (See Fig. 5.6)
module D_latch (Q, D, enable);
output Q;
input D, enable;
reg Q
always @ (enable or D)
if (enable) Q <= D; // Same as: if (enable == 1)
endmodule

/1 Alternative syntax (Verilog 2001, 2005)
module D_latch (output reg Q, input enable, D),
always @ (enable, D)
if (enable) Q <= D; I/ No action if enable not asserted
endmodule

HDL Example 5.2

/I D flip-flop without reset
module D_FF (Q, D, Clk);
output Q;
input D, Clk;
reg Q
always @ (posedge CIk)
Q<=D;
endmodule

/1 D flip-flop with asynchronous reset (V2001, V2005)
module DFF (output reg Q, input D, CIk, rst);
always @ (posedge Clk, negedge rst)
if (~rst) Q <= 1'b0; // Same as: if (rst == 0)
else Q <=D;
endmodule

The second module includes an asynchronous reset input in addition to the synchronous
clock. A specific form of an if statement is used to describe such a flip-flop so that the model
can be synthesized by a software tool. The event expression after the @ symbol in the always
statement may have any number of edge events, either posedge or negedge. For modeling hard-
ware, one of the events must be a clock event. The remaining events specify conditions under
which asynchronous logic is to be executed. The designer knows which signal is the clock, but
clock is not an identifier that software tools automatically recognize as the synchronizing sig-
nal of a circuit. The tool must be able to infer which signal is the clock, so you need to write the
description in a way that enables the tool to infer the clock correctly, The rules are simple to fol-
low: (1) Each if or else if statement in the procedural assignment statements is to correspond to

212

Chapter 5 Synchronous Sequential Logic

an asynchronous event, (2) the last else statement corresponds to the clock event, and (3) the
asynchronous events are tested first. There are two edge events in the second module of HDL
Example 5.2. The negedge rst (reset) event is asynchronous, since it matches the if (~rst)
statement. As long as rst is 0, O is cleared to 0. If Clk has a positive transition, its effect is
blocked. Only if rsr = 1 can the posedge clock event synchronously transfer D into Q.

Hardware always has a reset signal. It is strongly recommended that all models of edge-
sensitive behavior include a reset (or preset) input signal: otherwise, the initial state of the flip-
flops of the sequential circuit cannot be determined. A sequential circuit cannot be tested with
HDL simulation unless an initial state can be assigned with an input signal.

HDL Example 5.3 describes the construction of a T or JK flip-flop from a D flip-flop and
gates. The circuit is described with the characteristic equations of the flip-flops:

Qt+1)=0&T fora T flip-flop

Qr +1)=JQ" + K'Q for a JK flip-flop
The first module, 7FF, describes a T flip-flop by instantiating DFF. (Instantiation is explained
in Section 4.12.) The declared wire, DT, is assigned the exclusive-OR of Q and 7', as is required
for building a T flip-flop with a D flip-flop. The instantiation with the value of DT replacing D

in module DFF produces the required T flip-flop. The JK flip-flop is specified in a similar man-
ner by using its characteristic equation to define a replacement for D in the instantiated DFF.

HDL Example 5.3

/I T flip-flop from D flip-flop and gates
module TFF (Q, T, Clk, rst);
output Q;
input T, Clk, rst;
wire DT,
assignDT=Q*T; I/ Continuous assignment
Il Instantiate the D flip-flop
DFF TF1(Q, DT, CIk, rst);
endmodule

/1 JK fiip-flop from D flip-flop and gates (V2001, 2005)
module JKFF (output reg Q, input J, K, Clk, rst);
wire JK;
assign JK=(J & ~Q) | (~K & Q);
/I Instantiate D fiip-flop
DFF JK1 (Q, J, K, Clk, rst);
endmodule

/1 D flip-flop (V2001, V2005)
module DFF (output reg Q, input D, Clk, rst);
always @ (posedge Clk, negedge rst)
if (~rst) Q <= 1'b0;
else Q<=D;
endmodule

Section 5.6 Synthesizable HDL Models of Sequential Circuits 213

HDL Example 5.4 shows another way to describe a JK flip-flop. Here, we choose to describe
the flip-flop by using the characteristic table rather than the characteristic equation. The case
multiway branch condition checks the two-bit number obtained by concatenating the bits of J
and K. The case expression ({J, K }) is evaluated and compared with the values in the list of
statements that follows. The first value that matches the true condition is executed. Since the
concatenation of J and K produces a two-bit number, it can be equal to 00. 01, 10, or 11. The
first bit gives the value of J and the second the value of K. The four possible conditions spec-
ify the value of the next state of Q after the application of & positive-edge clock.

HDL Example 5.4

/I Functional description of JK flip-flop (V2001, 2005)
module JK_FF (input J, K, Clk, output reg Q, output Q_b);
assignQ_b=~Q;
always @ (posedge Clk)
case ({J.K})
2'b00: Q <= Q;
2'b01: Q <= 1'b0;
2'010: Q <= 1'b1;
2'b11: Q <=~Q;

endmodule

State Diagram

An HDL model of the operation of a sequential circuit can be based on the format of the cir-
cuit’s state diagram. A Mealy HDL model is presented in HDL Example 5.5 for the state ma-
chine described by the state diagram shown in Figure 5.16. The input, output, clock, and reset
are declared in the usual manner. The state of the flip-flops is declared with identifiers stare and
next_state. These variables hold the values of the present state and the next value of the se-
quential circuit. The state's binary assignment is done with a parameter statement. (Verilog
allows constants to be defined in a module by the keyword parameter.) The four states S0
through S3 are assigned binary 00 through 11. The notation §2 = 2'b10 is preferable to the al-
ternative S2 = 2. The former uses only two bits to store the constant, whereas the latter results
in a binary number with 32 (or 64) bits.

HDL Example 5.5

/I Mealy FSM zero detector (See Fig. 5.16) Verilog 2001, 2005 syntax
module Mealy_Zero_Detector (

output reg y_oult,

input %_in, clock, reset

b2
reg [1: 0] state, next_state;

parameter S0 = 2'b00, S1=2'b01, 82 = 2'b10, S3 = 2'b11;

214 Chapter 5 Synchronous Sequential Logic

always @ (posedge clock, negedge reset) Verilog 2001, 2005 syntax
if (reset == 0) state <= S0;
else state <= next_state;

always @ (state, x_in) // Form the next state
case (state)
S0: if (x_in) nexl_state = S1; else next_state = SO;
S1: if (x_in) next_state = S3; else next_state = SO;
S2: if (~x_in) next_state = SO; else next_state = S2;
S3: if (x_in) next_state = S2; else next_state = SO;
endcase

always @ (state, x_in) // Form the output
case (state)
S0: y_out=0;
51,82, S3: y_out =~x_in,
endcase
endmodule

module t_Mealy_Zero_Detector;
wire 1ty out;
reg ! x_in, t _clock, t_reset,

Mealy_Zero_Detector MO (t_y_out, t_x_in, t_clock, t_reset);
initial #200 $finish;
initial begin t_clock = 0; forever #5 t_clock = ~t_clock; end

initial fork
_resel = 0;
#2 t_reset = 1;
#87 t_reset=0;
#89 | _reset=1;
#10t x_in=1;
#30t x_in=0;
#0t x_in=1;
#50t x_in=0;
#5211 x_in=1;
#54t x_in=0;
#70t_x_in=1;
#80t_x_in=1,
#70 t_x_in=0;
#01t x_in=1,;
#100t x_in=0;
#120t x_in=1;
#1601 x_in=0;
#1170t x_in=1;
join
endmodule

Section 5.6 Synthesizable HDL Models of Sequential Circuits 215

The Verilog model in HDL Example 5.5 uses three always blocks that execute concurrently and
interact through common variables. The first always statement resets the circuit to the initial state
§0 = 00 and specifies the synchronous clocked operation. The statement state <= next_state
is executed only in response to a positive-edge transition of the clock. This means that any change
in the value of next_stare in the second always block can affect the value of srare only as a result
of a posedge event of clock, The second always block determines the value of the next state tran-
sition as a function of the present state and input. The value assigned to state by the nonblocking
assignment is the value of next_srare immediately before the rising edge of clock, Notice how the
multiway branch condition implements the state transitions specified by the annotated edges in the
state diagram of Fig. 5.16. The third always block specifies the output as a function of the pres-
ent state and the input. Although this block is listed as a separate behavior for clarity, it could be
combined with the second block. Note that the value of output y_ont may change if the value of
input x_in changes while the circuit is in any given state.

So let’s summarize how the model describes the behavior of the machine: At every rising
edge of clock, if reset is not asserted, the state of the machine is updated by the first always
block; when state is updated by the first always block, the change in state is detected by the
sensitivity list mechanism of the second always block: then the second always block updates
the value of next_state (it will be used by the first always block at the next tick of the clock):
the third always block also detects the change in stare and updates the value of the output. In
addition, the second and third always blocks detect changes in x_in and update nexi_srate and
v_our accordingly. The test bench provided with Mealy_Zero_Detector provides some wave-
forms to stimulate the model, producing the results shown in Fig. 5.22. Notice how 1_y_our

0 30 60 90
PN NN S TR N W TN N Y Y TN N TR T T AN S T [N (Y N T TN S S TN N MO A A MO WA WY T A W A
| | |
| | |
t_clock O o 0 g I g 6 B Il o O, B O O
1_reset 5 i i i L
I I |
| 1 1
1 | L
i - i g R e S
I I
| |

state[1:0] R E 3 o

next_state[1:0] o o)X 3 200 GHX 0 |
|

t_y_out |

valid Mealy owput Mealy glitch

FIGURE 5.22
Simulation output of Mealy Zero_Detector

216

Chapter 5 Synchronous Sequential Logic

responds to changes in both the state and the input and has a glitch (a transient logic value).
The waveform description uses the fork . . . join construct. Statements within the fork . . . join
block execute in parallel, so the time delays are relative to a common reference of 1 = 0. It is
usually more convenient to use the fork. .. join block instead of the begin . .. end block in
describing waveforms. The waveform of reset is triggered “on the fly” to demonstrate that the
machine recovers from an unexpected reset condition during any state.

How does our Verilog model Mealy_Zero_Detector correspond to hardware? The first
always block corresponds to a D flip-flop implementation of the state register in Fig. 5.21; the
second always block is the combinational logic block describing the next state; the third always
block describes the output combinational logic of the zero-detecting Mealy machine. The reg-
ister operation of the state transition uses the nonblocking assignment operator (< =) because
the (edge-sensitive) flip-flops of a sequential machine are updated concurrently by a common
clock. The second and third always blocks describe combinational logic. which is level sensi-
tive, so they use the blocking (=) assignment operator. Their sensitivity lists include both the
state and the input because their logic must respond to a change in either or both of them.

Note: the modeling style illustrated by Mealv_Zero_Detector is commonly used by de-
signers. Notice that the reset signal is associated with the first always block. It is modeled here
as an active-low reset. By including the reset in the model of the state transition, there is no need
to include it in the combinational logic that specifies the next state and the output, producing
a simpler and more readable description.

The behavior of the Moore FSM having the state diagram shown in Fig. 5.19 can be modeled
by the Verilog description in HDL Example 5.6. This example shows that it is possible to describe
the state transitions of a clocked sequential machine with only one always block. The present state
of the circuit is identified by the variable stare. The state transitions are triggered by the rising
edge of the clock according to the conditions listed in the case statements. The combinational
logic that implicitly determines the next state is included in the nonblocking assignment to szate.
In this example, the output of the circuit is independent of the input and is taken directly from the
outputs of the flip-flops. The two-bit output y_out is specified with a continuous (assign) statement
and is equal 1o the value of the present state vector. Figure 5.23 shows some simulation results for
Moore_Model_Fig_5_19. Notice that the output of the Moore machine does not have glitches.

HDL Example 5.6
/I Moore model FSM (see Fig. 5.19) Verilog 2001, 2005 syntax
module Moore_Model_Fig_5_19 (
output [1: 0] y_out,
input x_in, clock, reset
)i
reg (1: 0] state;
parameter S0 =2'b00, S1=2'b01, S2 = 2'b10, S3 = 2'b11;

always @ (posedge clock, negedge reset)
if (reset == 0) state <= S0; // Initialize to state SO

else case (state)

Section 5.6 Synthesizable HDL Models of Sequential Circuits 217

S0 if (~x_in) state <= S1; else state <= SO
S1: if(x_in) state <= S2; else state <= §3;
S2: if (~x_in) state <= S3; else state <= S2;
83: if(~x_in) state <= S0, else state <= S3;

endcase

assign y_out = state; // Output of flip-flops

endmodule

0 30 60 90

RS) N M Wty e W] e el e S e T vy Y N TNV N S Wy S S) v e T G G e) T

t_clock

1_reset

1_x_in

state[1:0] 0 i1z folt1)l o 1B

1_y_out(1:0] 0 Y1 Y2 2foYr]l o J1B

N Ny (O gy A [(NN oy A [N gy S iy N Oy O g O
Iy U

—— = e ¢ L

Structural

FIGURE 5.23
Simulation output of HDL Example 5.6

Description of Clocked Sequential Circuits

Combinational logic circuits can be described in Verilog by a connection of gates (primitives
and UDPs), by dataflow statements (continuous assignments), or by level-sensitive cyclic be-
haviors (always blocks). Sequential circuits are composed of combinational logic and flip-
flops, and their HDL models use sequential UDPs and behavioral statements (edge-sensitive
cyclic behaviors) to describe the operation of flip-flops, One way to describe a sequential cir-
cuit uses a combination of dataflow and behavioral statements. The flip-flops are described
with an always statement. The combinational part can be described with assign statements
and Boolean equations. The separate modules can be combined to form a structural model by
instantiation within a module.

The structural description of a sequential circuit is shown in HDL Example 5.7. We want
to encourage the reader to consider alternative ways to model a circuit, so as a point of
comparison, we first present Moore_Model_Fig_5_20, a Verilog behavioral description of
the machine having the state diagram shown in Fig. 5.20. This style of modeling is direct.

218

Chapter 5 Synchronous Sequential Logic

An alternative style, used in Moore_Model_STR_Fig_5_20, is to represent the structure
shown in Fig. 5.20(a). This style uses two modules. The first describes the circuit of Fig. 5.20(a).
The second describes the 7' flip-flop that will be used by the circuit. We also show two ways
to model the T flip-flop. The first asserts that, at every clock tick, the value of the output
of the flip-flop toggles if the toggle input is asserted. The second model describes the be-
havior of the toggle flip-flop in terms of its characteristic equation. The first style is at-
tractive because it does not require the reader to remember the characteristic equation.
Nonetheless, the models are interchangeable and will synthesize to the same hardware cir-
cuit. A test bench module provides a stimulus for verifying the functionality of the circuit.
The sequential circuit is a two-bit binary counter controlled by input x_in. The output,
y_out, is enabled when the count reaches binary 11. Flip-flops A and B are included as out-
puts in order to check their operation. The flip-flop input equations and the output equation
are evaluated with continuous assignment (assign) statements having the corresponding
Boolean expressions. The instantiated T flip-flops use 7A and 7B as defined by the input
equations.

The second module describes the T flip-flop. The reser input resets the flip-flop to 0 with
an active-low signal. The operation of the flip-flop is specified by its characteristic eguation,
Ot +1)=0aT.

The test bench includes both models of the machine. The stimulus module provides com-
mon inputs to the circuits to simultaneously display their output responses. The first initial
block provides eight clock cycles with a period of 10 ns. The second initial block specifies a
toggling of input x_in that occurs at the negative edge transition of the clock. The result of the
simulation is shown in Fig. 5.24. The pair (A, B) goes through the binarv sequence 00, 01, 10,
11, and back to 00. The change in the count is triggered by a positive edge of the clock. pro-
vided that x_in = 1. If x_in = 0, the count does not change. y_our is equal to | when both A
and B are equal to 1. This verifies the main functionality of the circuit, but not a recovery from
an unexpected reset event.

HDL Example 5.7

I State-diagram-based model (V2001, 2005)
module Moore_Model_Fig_5_20 (

output y_out,

input x_in, clock, reset

)i

reg [1: 0] state;
parameter S0 =2'b00, S1=2'b01, $2=2b10, S3 =2'b11;
always @ (posedge clock, negedge reset)
if (reset == 0) state <= S0; /! Initialize to state SO

else case (state)
S0: if (x_in) state <= $1, else state <= SO;
S1: if (x_in) state <= §2; else state <= S1;

Section 5.6 Synthesizable HDL Models of Sequential Circuits

S§2: if {x_in) state <= S3; else state <= 52;
83: if(x_in) state <= SO; else state <= S3;
endcase

assign y_out = (state == S3); {/ Output of flip-flops
endmodule

/I structural model

module Moore_Model_STR_Fig_5 20 (
output y out A B,

input x_in, clock, reseal

)
wire TA, T8B;

/I Flip-flop input equations
assign TA=x_in & B;
assign TB = x_in;

/I Output equation
assigny out=A&B;

Il Instantiate Toggle flip-flops
Toggle_fiip_flop_3 M_A (A, TA, clock, reset);
Toggle_fiip_flop_3 M_B (B, TB, clock, reset);

endmodule

module Toggle_fiip_fiop (Q, T, CLK, RST_b};
output Q;
input T, CLK, RST b;
reg Q

always @ (posedge CLK, negedge RST_b)
if (RST_b==0)Q <= 1'b0;
else if (T)Q <=~Q;
endmodule

/Il Alternative model using characleristic eguation
/I module Toggle_flip_flop (Q, T, CLK, RST_b);
/I output Q;

Il 'input T, CLK, RST_b;

iHreg Q

/I always @ (posedge CLK, negedge RST)
i i (RST_b==0)Q<=1D0;

/I else Q<=Q*T;

/I endmodule

219

220

Chapter 5 Synchronous Sequential Logic
module t_Moore_Fig_5_20;
wire tyout2tyoutt;
reg t_x_in, t_clock, t_reset;

Moore_Model_Fig_5_20

M1(t_y_out_1,t x_in, t_clock, t_reset);

Moore_Model_STR_Fig_5_20 M2 (t y out 2 A B, t x_in t_clock, t_reset);

initial #200 $finish;
initial begin
t_reset=10,;
t_clock = 0;
#51 reset=1,;
repeat (16)
#5t_clock = ~t_clock;
end
initial begin
tx in=0;
#1511 x_in=1,
repeat (8)
#10t x_in=~t_x_in;
end
endmodule
0 50 100 150
Name b i b i 1 3 & 1 L s & 1 4 g & 4 4 |
1_clock (N = 188 65 O i 5 [oy e e Y
1_reset 25
t_x_in | L I L | 1
y_out_l I I
t_y_out_2 I
A |
B SN ey SN
FIGURE 5.24

Simulation output of HDL Example 5.7

Section 5.7 State Reduction and Assignment = 221

5.7 STATE REDUCTION AND ASSIGNMENT

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table
or diagram. The design (synthesis) of a sequential circuit starts from a set of specifications and
culminates in a logic diagram. Design procedures are presented in Section 5.8. Two sequen-
tial circuits may exhibit the same input—output behavior, but have a different number of inter-
nal states in their state diagram. The current section discusses certain properties of sequential
circuits that may simplify a design by reducing the number of gates and flip-flops it uses. In
general, reducing the number of flip-flops reduces the cost of a circuit.

State Reduction

The reduction in the number of flip-flops in a sequential circuit is referred 1o as the srare-
reduction problem. State-reduction algorithms are concerned with procedures for reducing the
number of states in a state table, while keeping the external input-output requirements un-
changed, Since m flip-flops produce 2" states, a reduction in the number of states may (or may
not) result in a reduction in the number of flip-flops. An unpredictable effect in reducing the
number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may require
more combinational gates,

We will illustrate the state-reduction procedure with an example. We start with a sequential
circuit whose specification is given in the state diagram of Fig. 5.25. In our example, only the
input—output sequences are important; the internal states are used merely to provide the re-
quired sequences. For that reason, the states marked inside the circles are denoted by letter
symbols instead of their binary values. This is in contrast to a binary counter, wherein the bi-
nary value sequence of the states themselves is taken as the outputs.

FIGURE 5.25
State diagram

222

Chapter 5 Synchronous Sequential Logic

There are an infinite number of input sequences that may be applied to the circuit; each re-
sults in a unigue output sequence. As an example, consider the input sequence 01010110100
starting from the initial state a. Each input of 0 or 1 produces an output of 0 or | and causes
the circuit to go to the next state. From the state diagram, we obtain the output and state sequence
for the given input sequence as follows: With the circuit in initial state a. an input of 0 produces
an output of 0 and the circuit remains in state a. With present state a and an input of [, the out-
put is 0 and the next state is b. With present state b and an input of 0. the output is 0 and the
next state is ¢. Continuing this process, we find the complete sequence to be as follows:

state a a b c d e f S g f g a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0o 0 0 1 1 0 1 0 0

In each column, we have the present state, input value, and output value. The next state is writ-
ten on top of the next column. It is important to realize that in this circuit the states themselves
are of secondary importance, because we are interested only in output sequences caused by input
sequences.

Now let us assume that we have found a sequential circuit whose state diagram has fewer
than seven states, and suppose we wish to compare this circuit with the circuit whose state di-
agram is given by Fig. 5.25. If identical input sequences are applied to the two circuits and iden-
tical outputs occur for all input sequences, then the two circuits are said to be equivalent (as
far as the input—output is concerned) and one may be replaced by the other. The problem of state
reduction is to find ways of reducing the number of states in a sequential circuit without altering
the input—output relationships.

We now proceed to reduce the number of states for this example. First, we need the state
table: it is more convenient to apply procedures for state reduction with the use of a table rather
than a diagram. The state table of the circuit is listed in Table 5.6 and is obtained directly from
the state diagram.

The following algorithm for the state reduction of a completely specified state table is given
here without proof: “Two states are said to be equivalent if, for each member of the set of in-
puts, they give exactly the same output and send the circuit either to the same state or to an

Table 5.6
State Table
Next State Output
Present State x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0
c a d 0 0
d ¢ f 0 1
¢ a f 0 1
f 2 f 0 1
g a f 0]

Section 5.7 State Reduction and Assignment 223

Table 5.7
Reducing the State Table

Next State Output

Present State x=0 x=1 x=0 x=1

0
0
0
1
1
1

e a0 R
LR - .- -]
e RS
(N = I = I = [3§ =]

equivalent state.” When two states are equivalent, one of them can be removed without alter-
ing the input—output relationships.

Now apply this algorithm to Table 5.6. Going through the state table, we look for two pres-
ent states that go to the same next state and have the same output for both input combinations.
States g and e are two such states: They both go to states a and fand have outputs of 0 and |
for v = 0 and x = 1, respectively. Therefore, states g and e are equivalent, and one of these
states can be removed. The procedure of removing a state and replacing it by its equivalent is
demonstrated in Table 5.7. The row with present state g is removed, and state g is replaced by
state e each time it occurs in the columns headed “Next State.”

Present state f now has next states ¢ and fand outputs 0 and 1 for x = 0 and x = 1, re-
spectively, The same next states and outputs appear in the row with present state d, Therefore,
states fand d are equivalent, and state f can be removed and replaced by d. The final reduced
table is shown in Table 5.8. The state diagram for the reduced table consists of only five states
and is shown in Fig. 5.26. This state diagram satisfies the original input-output specifications
and will produce the required output sequence for any given input sequence. The following list
derived from the state diagram of Fig. 5.26 is for the input sequence used previously (note that
the same output sequence results, although the state sequence is different):

state a a b ¢ d e d d e d e a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 1 1 0 | 0 0
Table 5.8
Reduced State Table
Next State Output
Present State x=0 x=1 x=0 x=1
a a b 0 0
b ¢ d 0 0
¢ a d 0 0
d e d 0 1
e a d 0 1

224

Chapter 5 Synchronous Sequential Logic

FIGURE 5.26
Reduced state diagram

In fact, this sequence is exactly the same as that obtained for Fig. 5.25 if we replace g by e and
fbyd.

Checking each pair of states for equivalency can be done systematically by means of a pro-
cedure that employs an implication table, which consists of squares, one for every suspected
pair of possible equivalent states. By judicious use of the table, it is possible to determine all
pairs of equivalent states in a state table. The use of the implication table for reducing the num-
ber of states in a state table is demonstrated in Section 9.5.

The sequential circuit of this example was reduced from seven to five states. In general, re-
ducing the number of states in a state table may result in a circuit with less equipment. How-
ever, the fact that a state table has been reduced to fewer states does not guarantee a saving in
the number of flip-flops or the number of gates.

State Assignment

In order to design a sequential circuit with physical components, it is necessary to assign unigue
coded binary values to the states. For a circuit with m states, the codes must contain n bits, where
2" = m. For example, with three bits, it is possible to assign codes to eight states, denoted by
binary numbers 000 through 111. If the state table of Table 5.6 is used, we must assign binary
values to seven states; the remaining state is unused. If the state table of Table 5.8 is used. only
five states need binary assignment, and we are left with three unused states. Unused states are
treated as don’t-care conditions during the design. Since don't-care conditions usually help in
obtaining a simpler circuit, it is more likely that the circuit with five states will require fewer
combinational gates than the one with seven states.

The simplest way to code five states is to use the first five integers in binary counting order,
as shown in the first assignment of Table 5.9. Another similar assignment is the Gray code
shown in assignment 2. Here, only one bit in the code group changes when going from one num-
ber to the next. This code makes it easier for the Boolean functions to be placed in the map for
simplification. Another possible assignment often used in the design of state machines to con-
trol data-path units is the one-hot assignment. This configuration uses as many bits as there are

Section 5.8 Design Procedure 225

Table 5.9
Three Possible Binary State Assignments

Assignment 1, Assignment 2, Assignment 3,

State Binary Gray Code One-Hot
a 000 000 00001
b 001 001 (0010
[y 010 011 00100

011 010 01000
e 100 110 10000
Table 5.10
Reduced State Table with Binary Assignment 1
Next State Output
Present State x=0 x=1 x=0 x=1
000 000 001 0 0
001 010 011 0 0
010 000 011 0 0
011 100 011 0 1
100 000 Ol 0 1

states in the circuit. At any given time, only one bit is equal to 1 while all others are kept at 0.
This type of assignment uses one flip-flop per state. which is not an issue for register-rich field-
programmable gate arrays. (See Chapter 7.) One-hot encoding usually leads to simpler de-
coding logic for the next state and output. One-hot machines can be faster than machines with
sequential binary encoding, and the silicon area required by the extra flip-flops can be offset
by the area saved by using simpler decoding logic. This trade-off is not guaranteed, so it must
be evaluated for a given design.

Table 5.10 is the reduced state table with binary assignment 1 substituted for the letter sym-
bols of the states. A different assignment will result in a state table with different binary val-
ues for the states. The binary form of the state table is used to derive the next-state and
output-forming combinational logic part of the sequential circuit. The complexity of the com-
binational circuit depends on the binary state assignment chosen.

Sometimes, the name transition table is used for a state table with a binary assignment.
This convention distinguishes it from a state table with symbolic names for the states. In this
book, we use the same name for both types of state tables.

5.8 DESIGN PROCEDURE

Design procedures or methodologies specify hardware that will implement a desired behavior.
The design effort for small circuits may be manual, but industry relies on automated synthesis

226

Chapter 5 Synchronous Sequential Logic

tools for designing massive integrated circuits. The building block used by synthesis tools is
the D flip-flop. Together with additional logic, it can implement the behavior of JK and T flip-
flops. In fact, designers generally do not concern themselves with the type of flip-flop: rather,
their focus is on correctly describing the sequential functionality that is to be implemented by
the synthesis tool. Here we will illustrate manual methods vsing D, JK. and T flip-flops.

The design of a clocked sequential circuit starts from a set of specifications and culminates
in a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.
In contrast to a combinational circuit, which is fully specified by a truth table, a sequential cir-
cuit requires a state table for its specification. The first step in the design of sequential circuits
is to obtain a state table or an equivalent representation, such as a state diagram.

A synchronous sequential circuit is made up of flip-flops and combinational gates. The de-
sign of the circuit consists of choosing the flip-flops and then finding a combinational gate struc-
ture that, together with the flip-flops, produces a circuit which fulfills the stated specifications.
The number of flip-flops is determined from the number of states needed in the circuit. The
combinational circuit is derived from the state table by evaluating the flip-flop input equations
and output equations. In fact, once the type and number of flip-flops are determined, the design
process involves a transformation from a sequential circuit problem into a combinational circuit
problem. In this way, the techniques of combinational circuit design can be applied.

The procedure for designing synchronous sequential circuits can be summarized by a list of
recommended steps:

1. From the word description and specifications of the desired operation. derive a state
diagram for the circuit.

2. Reduce the number of states if necessary.

3. Assign binary values to the states.

4. Obtain the binary-coded state table.

5. Choose the type of flip-flops to be used.

6. Derive the simplified flip-flop input equations and output equations.
7. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is familiar with
digital logic terminology. It is necessary that the designer use intuition and experience 1o ar-
rive at the correct interpretation of the circuit specifications, because word descriptions may
be incomplete and inexact. Once such a specification has been set down and the state diagram
obtained, it is possible to use known synthesis procedures to complete the design. Although there
are formal procedures for state reduction and assignment (steps 2 and 3), they are seldom used
by experienced designers. Steps 4 through 7 in the design can be implemented by exact algo-
rithms and therefore can be automated. The part of the design that follows a well-defined pro-
cedure is referred to as synthesis. Designers using logic synthesis tools (software) can follow
a simplified process that develops an HDL description directly from a state diagram. letting the
synthesis tool determine the circuit elements and structure that implement the description.

The first step is a critical part of the process, because succeeding steps depend on it. We
will give one simple example to demonstrate how a state diagram is obtained from a word
specification.

Section 5.8 Design Procedure 227

FIGURE 5.27
State diagram for sequence detector

Suppose we wish to design a circuit that detects a sequence of three or more consecutive 1's
in a string of bits coming through an input line (i.e.. the input is a serial bit stream). The state
diagram for this type of circuit is shown in Fig. 5.27. It is derived by starting with state Sy, the
reset state. If the input is 0, the circuit stays in S;, but if the input is 1, it goes to state §; to in-
dicate that a 1 was detected. If the next input is 1. the change is to state S, to indicate the ar-
rival of two consecutive 1's, but if the input is 0, the state goes back to Sp. The third consecutive
I sends the circuit to state §3. If more 1's are detected, the circuit stays in S3. Any 0 input sends
the circuit back to Sp. In this way. the circuit stays in S5 as long as there are three or more con-
secutive 1's received. This is a Moore model sequential circuit, since the output is 1 when the
circuit is in state S3 and is 0 otherwise.

Synthesis Using D Flip-Flops

Once the state diagram has been derived, the rest of the design follows a straightforward syn-
thesis procedure. In fact, we can design the circuit by using an HDL description of the state di-
agram and the proper HDL synthesis tools to obtain a synthesized netlist. (The HDL description
of the state diagram will be similar to HDL Example 5.6 in Section 5.6.) To design the circuit
by hand, we need to assign binary codes to the states and list the state table. This is done in
Table 5.11. The table is derived from the state diagram of Fig. 5.27 with a sequential binary as-
signment. We choose two D flip-flops to represent the four states, and we label their outputs
A and B, There is one input x and one output y. The characteristic equation of the D flip-flop
is Q1 + 1) = Dgp. which means that the next-state values in the state table specify the D input
condition for the flip-flop. The flip-flop input equations can be obtained directly from the next-
state columns of A and B and expressed in sum-of-minterms form as

A(t + 1) = D4(A.B.x) = £(3.5.7)
B(r + 1) = Dg(A, B,x) = £(1.5,7)
v(A, B.x) = £(6,7)

228

Chapter 5 Synchronous Sequential Logic

Table 5.11
State Table for Sequence Detector
Present Next
State Input State Output
A B x A B ¥
0 0 0 0 0 0
0 0 1 0 1 0
0 | 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 | 1 0
1 1 0 0 0 1
1 1 1 1 1 1

where A and B are the present-state values of flip-flops A and B, x is the input, and D, and Dy
are the input equations, The minterms for output y are obtained from the output column in the
state table.

The Boolean equations are simplified by means of the maps plotted in Fig. 5.28. The sim-
plified equations are

D,‘=:‘1.X+Bx
Dg = Ax + B'x
y=AB

The advantage of designing with D flip-flops is that the Boolean equations describing the in-
puts to the flip-flops can be obtained directly from the state table. Software tools automatically
infer and select the D-type flip-flop from a properly written HDL model. The schematic of the
sequential circuit is drawn in Fig. 5.29.

B Bx Bx B
01 11 10 A 00 A 00 01 11 10
m, My [my "y my m m
A 0 0
- iy m, i, m, - C—
04 h Al Afl . j
ol ¥ 7
e — -
X . x
D,‘-AI'FBI D3=A1*B‘X y=AB
FIGURE 5.28

Maps for sequence detector

Section 5.8 Design Procedure 229

Clock

) ¥
. })

FIGURE 5.29
Logic diagram of sequence detector

Excitation Tables

The design of a sequential circuit with flip-flops other than the D type is complicated by the
fact that the input equations for the circuit must be derived indirectly from the state table. When
D-type flip-flops are employed, the input equations are obtained directly from the next state.
This is not the case for the JK and T types of flip-flops. In order to determine the input equa-
tions for these flip-flops. it is necessary to derive a functional relationship between the state table
and the input equations.

The flip-flop characteristic tables presented in Table 5.1 provide the value of the next state
when the inputs and the present state are known. These tables are useful for analyzing se-
quential circuits and for defining the operation of the flip-flops. During the design process, we
usually know the transition from the present state to the next state and wish to find the flip-flop
input conditions that will cause the required transition. For this reason, we need a table that lists
the required inputs for a given change of state. Such a table is called an excitation table.

Table 5.12 shows the excitation tables for the two flip-flops. Each table has a column for
the present state O(1), a column for the next state Q(r + 1), and a column for each input to show

230

Chapter 5 Synchronous Sequential Logic

Table 5.12

Flip-Flop Excitation Tables

an Q=1 J K y Qe=1)|T
0 0 0 X 0 0 0
0 1 1 X 0 I 1
I 0 X 1 | 0 1
1 1 X 0 1 I | 0

() JK T

how the required transition is achieved. There are four possible transitions from the present state
to the next state. The required input conditions for each of the four transitions are derived from
the information available in the characteristic table. The symbol X in the tables represents a
don’t-care condition, which means that it does not matter whether the input is 1 or 0.

The excitation table for the JK flip-flop is shown in part (a). When both present state and next
state are 0, the J input must remain at 0 and the K input can be either 0 or 1. Similarly, when both
present state and next state are 1, the K input must remain at 0, while the J input can be 0 or 1.
If the flip-flop is to have a transition from the O-state to the 1-state, J/ must be equal to 1. since
the J input sets the flip-flop. However, input K may be either Oor 1. If K = 0.the J = 1 con-
dition sets the flip-flop as required; if K = 1 and J = 1, the flip-flop is complemented and
goes from the O-state to the 1-state as required. Therefore, the K input is marked with a don’t-
care condition for the 0-to-1 transition. For a transition from the 1-state to the 0-state. we must
have K = 1, since the K input clears the flip-flop. However, the J input may be either 0 or 1,
since J = 0 has no effectand J = 1 together with K = 1 complements the flip-flop with a re-
sultant transition from the 1-state to the 0-state.

The excitation table for the T flip-flop is shown in part (b). From the characteristic table, we
find that when input 7 = 1, the state of the flip-flop is complemented, and when T = 0, the
state of the flip-flop remains unchanged. Therefore, when the state of the flip-flop must re-
main the same, the requirement is that 7 = 0. When the state of the flip-flop has to be com-
plemented, 7" must equal 1,

Synthesis Using JK Flip-Flops

The manual synthesis procedure for sequential circuits with JK flip-flops is the same as with
D flip-flops. except that the input equations must be evaluated from the present-state to the next-
state transition derived from the excitation table. To illustrate the procedure, we will synthe-
size the sequential circuit specified by Table 5.13. In addition to having columns for the present
state, input, and next state, as in a conventional state table, the table shows the flip-flop input
conditions from which the input equations are derived. The flip-flop inputs are derived from
the state table in conjunction with the excitation table for the JK flip-flop. For example, in the
first row of Table 5.13, we have a transition for flip-flop A from 0 in the present state to 0 in
the next state, In Table 5.12, for the JK flip-flop, we find that a transition of states from pres-
ent state 0 to next state () requires that input J be 0 and input K be a don’t-care. So 0 and X are

Section 5.8 Design Procedure 231

Table 5.13
State Table and K Flip-Fiop Inputs
Present Next
State Input State Flip-Flop Inputs
A B x A B I K U5 Ky
0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X 1 X
0 | 0 1 0 1 X X 1
0 1 1 0 1 0 X X 0
1 0 0 1 0 X 0 0 X
1 0 1 1 I X 0 1 X
1 1 0 1 1 X 0 X 0
1 1 1 o 0 X 1 X 1

entered in the first row under J, and K 4. respectively. Since the first row also shows a transi-
tion for flip-flop B from 0 in the present state to 0 in the next state, 0 and X are inserted into
the first row under Jg and K, respectively. The second row of the table shows a transition for
flip-flop B from 0 in the present state to 1 in the next state. From the excitation table, we find
that a transition from 0 to | requires that J be | and K be a don’t-care, so 1 and X are copied
into the second row under Ji and K g, respectively. The process is continued for each row in
the table and for each flip-flop, with the input conditions from the excitation table copied into
the proper row of the particular flip-flop being considered.

The flip-flop inputs in Table 5.13 specify the truth table for the input equations as a func-
tion of present state A, present state B, and input x. The input equations are simplified in the
maps of Fig. 5.30. The next-state values are not used during the simplification, since the input
equations are a function of the present state and the input only. Note the advantage of using JK-
type flip-flops when sequential circuits are designed manually. The fact that there are so many
don’t-care entries indicates that the combinational circuit for the input equations is likely to be
simpler, because don't-care minterms usually help in obtaining simpler expressions. If there are
unused states in the state table, there will be additional don’t-care conditions in the map.

The four input equations for the pair of JK flip-flops are listed under the maps of Fig. 5.30.
The logic diagram (schematic) of the sequential circuit is drawn in Fig. 5.31.

Synthesis Using T Flip-Flops

The procedure for synthesizing circuits using 7' flip-flops will be demonstrated by designing
a binary counter. An n-bit binary counter consists of n flip-flops that can count in binary from
0to 2" — 1. The state diagram of a three-bit counter is shown in Fig. 5.32. As seen from the
binary states indicated inside the circles, the flip-flop outputs repeat the binary count sequence
with a return to 000 after 111. The directed lines between circles are not marked with input
and output values as in other state diagrams. Remember that state transitions in clocked se-
quential circuits occur during a clock edge: the flip-flops remain in their present states if no
clock is applied. For that reason, the clock does not appear explicitly as an input variable in

232 Chapter 5 Synchronous Sequential Logic

B
Bx
A 00 01 11 10
B O C—
0 X R X
m, ., e ",
Afl] X
x
KA . ﬂx
Bx
A 00
"y
0
my
A4l
Kﬂ = (A G}x]'
FIGURE 5.30

Maps for | and K input equations

Clock

FIGURE 5.31
Logic diagram for sequential circuit with JK flip-flops

Section 5.8 Design Procedure 233

FIGURE 5.32
State diagram of three-bit binary counter

a state diagram or state table. From this point of view, the state diagram of a counter does not
have to show input and output values along the directed lines. The only input to the circuit is
the clock, and the outputs are specified by the present state of the flip-flops. The next state of
a counter depends entirely on its present state, and the state transition occurs every time the
clock goes through a transition,

Table 5.14 is the state table for the three-bit binary counter. The three flip-flops are sym-
bolized by A, Ay, and Ay. Binary counters are constructed most efficiently with T flip-flops
because of their complement property. The flip-flop excitation for the 7 inputs is derived from
the excitation table of the T flip-flop and by inspection of the state transition of the present state
to the next state. As an illustration, consider the flip-flop input entries for row 001. The pres-
ent state here is 001 and the next state is 010, which is the next count in the sequence, Com-
paring these two counts, we note that A, goes from 0 to 0. so T is marked with 0 because
flip-flop A, must not change when a clock occurs. Also, A goes from Oto 1, so T4 is marked
with a 1 because this flip-flop must be complemented in the next clock edge. Similarly, Ag
goes from 1 to 0. indicating that it must be complemented, so T is marked with a 1. The last
row. with present state 111, is compared with the first count 000, which is its next state. Going
from all 1's to all 0's requires that all three flip-flops be complemented.

Table 5.14
State Table for Three-Bit Counter
Present State Next State Flip-Flop Inputs
Az Ay Ao Az A1 A Taz Tav Tao
0 0 0 0 0] 0 0 |
0 0 | 0 1 0 0 1 1
0 I 0 0 1 1 0 0 |
0 | 1 | 0 0 | 1 1
| 0 0 1 0 | 0 0 1
| 0 l | 1 0 0 1 1
! ! 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1

234 Chapter 5 Synchronous Sequential Logic

AIAU
Ag 00

Ay AjAy

—_

01 11 10 A 00

my,

i, A My

[CH

N iy y

Ty = A1y

A(I

FIGURE 5.33
Maps for three-bit binary counter

Ay

Clock

FIGURE 5.34
Logic diagram of three-bit binary counter

The flip-flop input equations are simplified in the maps of Fig. 5.33. Note that Ty, has 1's
in all eight minterms because the least significant bit of the counter is complemented with
each count, A Boolean function that includes all minterms defines a constant value of 1. The
input equations listed under each map specify the combinational part of the counter. In-
cluding these functions with the three flip-flops, we obtain the logic diagram of the count-
er, as shown in Fig. 5.34. For simplicity, the reset signal is not shown, but be aware that
every design should include a reset signal.

PROBLEMS

Answers to problems marked with * appear at the end of the book. Where appropriate. a logic design
and its related HDL modeling problem are cross referenced.

Note: For each problem that requires writing and verifying a HDL model. a test plan should be written
to identify which functional features are to be tested during the simulation and how they will be tested.
For example. a reset on the fly could be tested by asserting the reset signal while the simulated
machine is in a state other than the reset state, The test plan is to guide the development of a test bench
that will implement the plan. Simulate the model, using the test bench, and verify that the behavior is

correct.

Problems 235

If synthesis tools and an ASIC cell library are available, the Verilog descriptions developed for

Problems 5.34-5.46 can be assigned as synthesis exercises, The gate-level circuit produced by the
synthesis tools should be simulated and compared with the simulation results for the presynthesis

model.
5.1

5.2

53

54

55

5.6

5.7

5.8%

The D latch of Fig. 5.6 is constructed with four NAND gates and an inverter. Consider the fol-
lowing three other ways for obtaining a D latch, and in each case draw the logic diagram and
verify the circuit operation;

(a) Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be
needed.

(b) Use NOR gates for all four gates, Inverters may be needed.

(c) Use four NAND gates only (without an inverter). This can be done by connecting the output
of the upper gate in Fig. 5.6 (the gate that goes to the SR latch) to the input of the lower gate
(instead of the inverter output).

Construct a JK flip-flop, using a D flip-flop. a two-to-one-line multiplexer, and an inverter.
(HDL—see Problem 5.34.)

Show that the characteristic equation for the complement output of a JX flip-flop is
Q'r+1)=J0Q +KQ

A PN flip-flop has four operations, clear to (), no change, complement, and set to 1, when inputs

P and N are 00, 01, 10, and 11, respectively.

(a) Tabulate the characteristic table. (b)* Derive the characteristic equation.

(c) Tabulate the excitation table. (d) Show how the PN flip-flop can be converted
to a D flip-flop.

Explain the differences among a truth table, a state table, a characteristic table, and an excitation

table. Also, explain the difference among a Boolean equation, a state equation, a characteristic

equation, and a flip-flop input equation.

A sequential circuit with two D flip-flops A and 8, two inputs x and y, and one output z is speci-
fied by the following next-state and output equations (HDL—see Problem 5.35):

A(t + 1) =x'vy + xB

B(t +1)=2x"A + 1B
z=A

(a) Draw the logic diagram of the circuit.
(b) List the state table for the sequential circuit.
(c) Draw the corresponding state diagram,

A sequential circuit has one flip-flop @, two inputs x and y, and one output S. It consists of a full-
adder circuit connected to a D flip-flop, as shown in Fig. P5.7. Derive the state table and state
diagram of the sequential circuit.

Derive the state table and the state diagram of the sequential circuit shown in Fig. P5.8. Explain
the function that the circuit performs. (HDL—see Problem 5.36.)

236 Chapter 5 Synchronous Sequential Logic

FIGURE P5.7

Clock

FIGURE P5.8

5.9 Asequential circuit has two JX flip-flops A and B and one input x. The circuit is described by the
following flip-flop input equations:
Ji=x K;=8
Jg=x Kg=A

(a)* Derive the state equations A(r + 1) and B(r + 1) by substituting the input equations for the
J and K variables.
{b) Draw the state diagram of the circuit.
5.10 A sequential circuit has two JK flip-flops A and B, two inputs x and v, and one output =. The flip-

flop input equations and circuit output equation are

Jy=Bx+ B8y K,=FBx

J”:A'I K’=A+.I‘_\"

z = Ax.'y’ + B;!,.'

Problems 237

(a) Draw the logic diagram of the circuit,
(b) Tabulate the state table.
(¢)* Derive the state equations for A and B.

5.17% Starting from state 00 in the state diagram of Fig. 5.16, determine the state transitions and

5.12+

5.13*

5.16*

517

output sequence that will be generated when an input sequence of 010110111011110 is
applied.

Reduce the number of states in the following state table, and tabulate the reduced state table:

Next State Output
Present State x =10 x=1 x=0 x=1
a f b 0 0
b d ¢ 0 0
(o £ ¢ 0 0
d 2 a 1 0
e d ¢ 0 0
f f b 1 1
g g h 0 |
h 2 a 1 0

Starting from state & and the input sequence 01110010011, determine the output sequence for
(a) the state table of the previous problem and

(b) the reduced state table from the previous problem. Show that the same output sequence is ob-
tained for both.

Substitute binary assignment 2 from Table 5.9 to the states in Table 5.8, and obtain the binary state
table.

List a state table for the JK flip-flop, using Q as the present and next state and J and K as in-
puts. Design the sequential circuit specified by the state table, and show that it is equivalent to
Fig. 5.12(a).

Design a sequential circuit with two D flip-flops A and B and one input x_in.

(a) When x_in = 0, the state of the circuit remains the same. When x_in = 1, the circuit goes
through the state transitions from 00 to 01, to 11, to 10, back to ()0, and repeats.

(b) When x_in = 0, the state of the circuit remains the same. When x_in = 1, the circuit goes
through the state transitions from 00 to 11, to 01, to 10, back to 00, and repeats. (HDL—see
Problems 5.38.)

Design a one-input, one-output serial 2’s complementer. The circuit accepts a string of bits from
the input and generates the 2's complement at the output. The circuit can be reset asynchronously
to start and end the operation. (HDL—see Problem 5.39.)

238 Chapter 5 Synchronous Sequential Logic

5.18* Design a sequential circuit with two JK flip-flops A and B and two inputs Eand F. If E = 0, the
circuit remains in the same state regardless of the value of F. When £ = | and F = 1, the cir-
cuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats, When
E = 1and F = 0, the circuit goes through the state transitions from 00 to 11, to 10, to 01, back
to 00, and repeats. (HDL—see Problem 5.40.)

5.19 A sequential circuit has three flip-flops A, B, and C; one input x_in: and one output ¥_our. The
state diagram is shown in Fig. P5.19. The circuit is to be designed by treating the unused states
as don’t-care conditions, Analyze the circuit obtained from the design to determine the effect of
the unused states. (HDL—see Problem 5.41.)

(a)* Use D flip-flops in the design.
(b) Use JK flip-flops in the design.

FIGURE P5.19

5.20 Design the sequential circuit specified by the state diagram of Fig. 5.19, using T flip-flops.
5.21 What is the main difference between an initial statement and an always statement in Verilog HDL?
5.22 Draw the waveform generated by the following statements:
(a) initial begin
w=0; #15w=1; #0w=0; #25w=1; #0w=0;
end

(b) initial fork
w=0; #15w=1; #60w=0; #25w=1; #40w=0;

join
5.23*% Consider the following statements, assuming that RegA contains the value of 30 initially:
(a) RegA =75; (b) RegA <=75;
RegB = RegA; RegB <= RegA,;

What are the values of RegA and RegB after execution?

5.24

5.25

5.26

5.27

5.28

5.29

5.30°

531

5.32

533

534

5.35

Problems 2139
Write and verify an HDL behavioral description of a positive-edge-sensitive D flip-flop with
(a) active-low asynchronous preset and clear. (This type of flip-flop is shown in Fig. 11.13.)
{b) active-low synchronous preset and clear.
A special positive-edge-triggered flip-flop has two inputs D and D2 and a control input that
chooses between the two. Write and verify an HDL behavioral description of this flip-flop.
Write and verify an HDL behavioral description of the JK flip-flop, using an if-else statement based
on the value of the present state.
(a)* Consider the characteristic equation when @ = OorQ = 1
(b) Consider how the J and K inputs affect the output of the flip-flop at each clock tick.
Rewrite and verify the description of HDL Example 5.5 by combining the state transitions and
output into one always block.
Simulate the sequential circuit shown in Fig. 5.17.
(a) Write the HDL description of the state diagram (i.e.. a behavioral model).
(b) Write the HDL description of the circuit diagram (i.e.. a structural model).

(c) Write an HDL stimulus with the sequence 00, 01, 11, 10 of inputs. Verify that the response
is the same for both descriptions.

Write a behavioral description of the state machine described by the state diagram shown in
Fig. P5.19. Write a test bench and verify the functionality of the description.

Draw the logic diagram for the sequential circuit described by the following HDL module:

module Seq_Ckt (input A, B, C, CLK, output reg Q);
reg E;

always @ (posedge CLK);
begin
E<=A&B;
Q<=E|C;
end
endmodule

What changes, if any, must be included in the circuit if the last two statements use blocking in-
stead of nonblocking assignment?

How should the description in Problem 5.30 be written so that the circuit has the same behavior
when the assignments are made with = instead of with <= ?

Using an initial statement with a begin ... end block, write a Verilog description of the wave-
forms shown in Fig. P5.32, Repeat using a fork ... join block.

Explain why it is important that the stimulus signals in a test bench be synchronized to the inac-
tive edge of the clock of the sequential circuit that is to be tested.

Using behavioral models for the D flip-flop and the inverter, write and verify an HDL model of
the J-K flip-flop described in Problem 5.2,

Write and verify an HDL mode! of the sequential circuit described in Problem 5.6,

240 Chapter 5

Synchronous Sequential Logic

enable

N | [
IR [N N D | T S

o —

S

£ e d

$ 1
r T T T T T T T !
0 10 20 30 40 50 60 70 80

FIGURE P5.32

Waveforms for Problem 5.32

5.36

5.37

5.38

5.39

5.40
541

5.42

5.43

5.44
545

REFERENCES

Write and verify an HDL structural description of the machine having the circuit diagram
(schematic) shown in Fig. P5.8.

Write and verify HDL behavioral descriptions of the state machines shown in Fig. 5.25 and
Fig, 5.26. Write a test bench to compare the state sequences and input-output behaviors of the
two machines.

Write and verify an HDL behavioral description of the machine described in Problem 5.16.
Write and verify a behavioral description of the machine specified in Problem 5.17.
Write and verify a behavioral description of the machine specified in Problem 5.18.

Write and verify a behavioral description of the machine specified in Problem 3.19. (Hint: See
the discussion of the default case item preceding HDL Example 4.8 in Chapter 4.)

Write and verify an HDL structural description of the circuit shown in Fig. 5.29.

Write and verify an HDL behavioral description of the three-bit binary counter shown in Figure
5.34.

Write and verify a Verilog model of a D flip-flop having synchronous reset,

Write and verify an HDL behavioral description of the sequence detector described in Figure
5.27

1.
2.

BHASKER, 1. 1997. A Verilog HDL Primer. Allentown, PA; Star Galaxy Press.
BHASKER, J. 1998, Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

ENOWA W

A

10.

11.
12.

13

References 24

CiLETTI, M. D. 1999. Modeling, Synihesis, and Rapid Protoryping with Verilog HDL. Upper Sad-
die River, NJ: Prentice Hall.

DIETMEYER, D. L. 1988. Logic Design of Digital Systems, 3d ed. Boston: Allyn Bacon.

Gatskl, D. D. 1997. Principles of Digital Design. Upper Saddle River. NJ: Prentice Hall,
Haves, J, P. 1993, Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

Karz, R. H. 2005. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

Mano, M, M., and C. R. KimE. 2005. Logic and Computer Design Fundamentals & Xilinx 6.3
Student Edition, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

NELSON, V. P, H. T. NAGLE, J. D. Irwiy, and B. D. CarroLL. 1995, Digital Logic Circuit Analy-
sis and Design. Englewood Cliffs, NJ: Prentice Hall,

PALNITKAR, S. 1996, Verilog HDL: A Guide 1o Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

RotH, C. H. 2004. Fundamentals of Logic Design, 5th ed. St. Paul, MN: Brooks/Cole.
THoMAS, D. E., and P. R. MoORBY, 2002, The Verilog Hardware Description Language, 6th ed.
Boston: Kluwer Academic Publishers.

WAaKERLY, 1. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NJ:
Prentice Hall.

